Term Rewriting System R:
[x, y, z]
bsort(nil) -> nil
bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
bubble(nil) -> nil
bubble(.(x, nil)) -> .(x, nil)
bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z))))
last(nil) -> 0
last(.(x, nil)) -> x
last(.(x, .(y, z))) -> last(.(y, z))
butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

BSORT(.(x, y)) -> LAST(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
BSORT(.(x, y)) -> BUBBLE(.(x, y))
BSORT(.(x, y)) -> BSORT(butlast(bubble(.(x, y))))
BSORT(.(x, y)) -> BUTLAST(bubble(.(x, y)))
BUBBLE(.(x, .(y, z))) -> BUBBLE(.(x, z))
BUBBLE(.(x, .(y, z))) -> BUBBLE(.(y, z))
LAST(.(x, .(y, z))) -> LAST(.(y, z))
BUTLAST(.(x, .(y, z))) -> BUTLAST(.(y, z))

Furthermore, R contains four SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Nar`

Dependency Pair:

LAST(.(x, .(y, z))) -> LAST(.(y, z))

Rules:

bsort(nil) -> nil
bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
bubble(nil) -> nil
bubble(.(x, nil)) -> .(x, nil)
bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z))))
last(nil) -> 0
last(.(x, nil)) -> x
last(.(x, .(y, z))) -> last(.(y, z))
butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

The following dependency pair can be strictly oriented:

LAST(.(x, .(y, z))) -> LAST(.(y, z))

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(LAST(x1)) =  1 + x1 POL(.(x1, x2)) =  1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 5`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Nar`

Dependency Pair:

Rules:

bsort(nil) -> nil
bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
bubble(nil) -> nil
bubble(.(x, nil)) -> .(x, nil)
bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z))))
last(nil) -> 0
last(.(x, nil)) -> x
last(.(x, .(y, z))) -> last(.(y, z))
butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polynomial Ordering`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Nar`

Dependency Pairs:

BUBBLE(.(x, .(y, z))) -> BUBBLE(.(y, z))
BUBBLE(.(x, .(y, z))) -> BUBBLE(.(x, z))

Rules:

bsort(nil) -> nil
bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
bubble(nil) -> nil
bubble(.(x, nil)) -> .(x, nil)
bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z))))
last(nil) -> 0
last(.(x, nil)) -> x
last(.(x, .(y, z))) -> last(.(y, z))
butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

The following dependency pairs can be strictly oriented:

BUBBLE(.(x, .(y, z))) -> BUBBLE(.(y, z))
BUBBLE(.(x, .(y, z))) -> BUBBLE(.(x, z))

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(BUBBLE(x1)) =  1 + x1 POL(.(x1, x2)) =  1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 6`
`             ↳Dependency Graph`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Nar`

Dependency Pair:

Rules:

bsort(nil) -> nil
bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
bubble(nil) -> nil
bubble(.(x, nil)) -> .(x, nil)
bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z))))
last(nil) -> 0
last(.(x, nil)) -> x
last(.(x, .(y, z))) -> last(.(y, z))
butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polynomial Ordering`
`       →DP Problem 4`
`         ↳Nar`

Dependency Pair:

BUTLAST(.(x, .(y, z))) -> BUTLAST(.(y, z))

Rules:

bsort(nil) -> nil
bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
bubble(nil) -> nil
bubble(.(x, nil)) -> .(x, nil)
bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z))))
last(nil) -> 0
last(.(x, nil)) -> x
last(.(x, .(y, z))) -> last(.(y, z))
butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

The following dependency pair can be strictly oriented:

BUTLAST(.(x, .(y, z))) -> BUTLAST(.(y, z))

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(BUTLAST(x1)) =  1 + x1 POL(.(x1, x2)) =  1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`           →DP Problem 7`
`             ↳Dependency Graph`
`       →DP Problem 4`
`         ↳Nar`

Dependency Pair:

Rules:

bsort(nil) -> nil
bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
bubble(nil) -> nil
bubble(.(x, nil)) -> .(x, nil)
bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z))))
last(nil) -> 0
last(.(x, nil)) -> x
last(.(x, .(y, z))) -> last(.(y, z))
butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Narrowing Transformation`

Dependency Pair:

BSORT(.(x, y)) -> BSORT(butlast(bubble(.(x, y))))

Rules:

bsort(nil) -> nil
bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
bubble(nil) -> nil
bubble(.(x, nil)) -> .(x, nil)
bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z))))
last(nil) -> 0
last(.(x, nil)) -> x
last(.(x, .(y, z))) -> last(.(y, z))
butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

BSORT(.(x, y)) -> BSORT(butlast(bubble(.(x, y))))
two new Dependency Pairs are created:

BSORT(.(x'', nil)) -> BSORT(butlast(.(x'', nil)))
BSORT(.(x'', .(y'', z'))) -> BSORT(butlast(if(<=(x'', y''), .(y'', bubble(.(x'', z'))), .(x'', bubble(.(y'', z'))))))

The transformation is resulting in one new DP problem:

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Nar`
`           →DP Problem 8`
`             ↳Polynomial Ordering`

Dependency Pairs:

BSORT(.(x'', .(y'', z'))) -> BSORT(butlast(if(<=(x'', y''), .(y'', bubble(.(x'', z'))), .(x'', bubble(.(y'', z'))))))
BSORT(.(x'', nil)) -> BSORT(butlast(.(x'', nil)))

Rules:

bsort(nil) -> nil
bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
bubble(nil) -> nil
bubble(.(x, nil)) -> .(x, nil)
bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z))))
last(nil) -> 0
last(.(x, nil)) -> x
last(.(x, .(y, z))) -> last(.(y, z))
butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

The following dependency pair can be strictly oriented:

BSORT(.(x'', .(y'', z'))) -> BSORT(butlast(if(<=(x'', y''), .(y'', bubble(.(x'', z'))), .(x'', bubble(.(y'', z'))))))

Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(if(x1, x2, x3)) =  0 POL(butlast(x1)) =  x1 POL(nil) =  0 POL(.(x1, x2)) =  1 POL(bubble(x1)) =  0 POL(BSORT(x1)) =  1 + x1 POL(<=(x1, x2)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Nar`
`           →DP Problem 8`
`             ↳Polo`
`             ...`
`               →DP Problem 9`
`                 ↳Narrowing Transformation`

Dependency Pair:

BSORT(.(x'', nil)) -> BSORT(butlast(.(x'', nil)))

Rules:

bsort(nil) -> nil
bsort(.(x, y)) -> last(.(bubble(.(x, y)), bsort(butlast(bubble(.(x, y))))))
bubble(nil) -> nil
bubble(.(x, nil)) -> .(x, nil)
bubble(.(x, .(y, z))) -> if(<=(x, y), .(y, bubble(.(x, z))), .(x, bubble(.(y, z))))
last(nil) -> 0
last(.(x, nil)) -> x
last(.(x, .(y, z))) -> last(.(y, z))
butlast(nil) -> nil
butlast(.(x, nil)) -> nil
butlast(.(x, .(y, z))) -> .(x, butlast(.(y, z)))

On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

BSORT(.(x'', nil)) -> BSORT(butlast(.(x'', nil)))
one new Dependency Pair is created:

BSORT(.(x''', nil)) -> BSORT(nil)

The transformation is resulting in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes