Term Rewriting System R:
[x, y, z]
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))

Termination of R to be shown.



   R
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
OC
       →TRS2
Dependency Pair Analysis



R contains the following Dependency Pairs:

MSORT(.(x, y)) -> MIN(x, y)
MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))
MSORT(.(x, y)) -> DEL(min(x, y), .(x, y))
MIN(x, .(y, z)) -> MIN(x, z)
MIN(x, .(y, z)) -> MIN(y, z)
DEL(x, .(y, z)) -> DEL(x, z)

Furthermore, R contains three SCCs.


   R
OC
       →TRS2
DPs
           →DP Problem 1
Usable Rules (Innermost)
           →DP Problem 2
UsableRules
           →DP Problem 3
UsableRules


Dependency Pairs:

MIN(x, .(y, z)) -> MIN(y, z)
MIN(x, .(y, z)) -> MIN(x, z)


Rules:


msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))


Strategy:

innermost




As we are in the innermost case, we can delete all 6 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
             ...
               →DP Problem 4
Size-Change Principle
           →DP Problem 2
UsableRules
           →DP Problem 3
UsableRules


Dependency Pairs:

MIN(x, .(y, z)) -> MIN(y, z)
MIN(x, .(y, z)) -> MIN(x, z)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. MIN(x, .(y, z)) -> MIN(y, z)
  2. MIN(x, .(y, z)) -> MIN(x, z)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
2>1
2>2
{1, 2} , {1, 2}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1=1
2>2
{1, 2} , {1, 2}
2>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
.(x1, x2) -> .(x1, x2)

We obtain no new DP problems.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
Usable Rules (Innermost)
           →DP Problem 3
UsableRules


Dependency Pair:

DEL(x, .(y, z)) -> DEL(x, z)


Rules:


msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))


Strategy:

innermost




As we are in the innermost case, we can delete all 6 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
UsableRules
             ...
               →DP Problem 5
Size-Change Principle
           →DP Problem 3
UsableRules


Dependency Pair:

DEL(x, .(y, z)) -> DEL(x, z)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. DEL(x, .(y, z)) -> DEL(x, z)
and get the following Size-Change Graph(s):
{1} , {1}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
.(x1, x2) -> .(x1, x2)

We obtain no new DP problems.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
UsableRules
           →DP Problem 3
Usable Rules (Innermost)


Dependency Pair:

MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))


Rules:


msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))


Strategy:

innermost




As we are in the innermost case, we can delete all 2 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
UsableRules
           →DP Problem 3
UsableRules
             ...
               →DP Problem 6
Rewriting Transformation


Dependency Pair:

MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))


Rules:


min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))
del(x, nil) -> nil


Strategy:

innermost




On this DP problem, a Rewriting SCC transformation can be performed.
As a result of transforming the rule

MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))
one new Dependency Pair is created:

MSORT(.(x, y)) -> MSORT(if(=(min(x, y), x), y, .(x, del(min(x, y), y))))

The transformation is resulting in no new DP problems.


Termination of R successfully shown.
Duration:
0:00 minutes