Term Rewriting System R:
[x, y, z]
msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

MSORT(.(x, y)) -> MIN(x, y)
MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))
MSORT(.(x, y)) -> DEL(min(x, y), .(x, y))
MIN(x, .(y, z)) -> MIN(x, z)
MIN(x, .(y, z)) -> MIN(y, z)
DEL(x, .(y, z)) -> DEL(x, z)

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pairs:

MIN(x, .(y, z)) -> MIN(y, z)
MIN(x, .(y, z)) -> MIN(x, z)

Rules:

msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))

The following dependency pairs can be strictly oriented:

MIN(x, .(y, z)) -> MIN(y, z)
MIN(x, .(y, z)) -> MIN(x, z)

There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
MIN(x1, x2) -> x2
.(x1, x2) -> .(x1, x2)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

Rules:

msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

DEL(x, .(y, z)) -> DEL(x, z)

Rules:

msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))

The following dependency pair can be strictly oriented:

DEL(x, .(y, z)) -> DEL(x, z)

There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
DEL(x1, x2) -> DEL(x1, x2)
.(x1, x2) -> .(x1, x2)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`           →DP Problem 5`
`             ↳Dependency Graph`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

Rules:

msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
Dependency Pair:

MSORT(.(x, y)) -> MSORT(del(min(x, y), .(x, y)))

Rules:

msort(nil) -> nil
msort(.(x, y)) -> .(min(x, y), msort(del(min(x, y), .(x, y))))
min(x, nil) -> x
min(x, .(y, z)) -> if(<=(x, y), min(x, z), min(y, z))
del(x, nil) -> nil
del(x, .(y, z)) -> if(=(x, y), z, .(y, del(x, z)))

Termination of R could not be shown.
Duration:
0:00 minutes