R
↳Dependency Pair Analysis
F(h(x)) -> F(i(x))
F(h(x)) -> I(x)
G(i(x)) -> G(h(x))
G(i(x)) -> H(x)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
F(h(x)) -> F(i(x))
f(h(x)) -> f(i(x))
g(i(x)) -> g(h(x))
h(a) -> b
i(a) -> b
F(h(x)) -> F(i(x))
f(h(x)) -> f(i(x))
h(a) -> b
i(a) -> b
g(i(x)) -> g(h(x))
POL(i(x1)) = 0 POL(g(x1)) = 0 POL(b) = 0 POL(h(x1)) = 1 POL(a) = 0 POL(f(x1)) = 0 POL(F(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
f(h(x)) -> f(i(x))
g(i(x)) -> g(h(x))
h(a) -> b
i(a) -> b
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
G(i(x)) -> G(h(x))
f(h(x)) -> f(i(x))
g(i(x)) -> g(h(x))
h(a) -> b
i(a) -> b
G(i(x)) -> G(h(x))
f(h(x)) -> f(i(x))
h(a) -> b
i(a) -> b
g(i(x)) -> g(h(x))
POL(i(x1)) = 1 POL(g(x1)) = 0 POL(G(x1)) = x1 POL(b) = 0 POL(h(x1)) = 0 POL(a) = 0 POL(f(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Dependency Graph
f(h(x)) -> f(i(x))
g(i(x)) -> g(h(x))
h(a) -> b
i(a) -> b