R
↳Dependency Pair Analysis
F(g(x), a) -> F(x, g(a))
F(g(x), g(y)) -> H(g(y), x, g(y))
H(g(x), y, z) -> F(y, h(x, y, z))
H(g(x), y, z) -> H(x, y, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
H(g(x), y, z) -> H(x, y, z)
H(g(x), y, z) -> F(y, h(x, y, z))
F(g(x), g(y)) -> H(g(y), x, g(y))
F(g(x), a) -> F(x, g(a))
f(a, g(y)) -> g(g(y))
f(g(x), a) -> f(x, g(a))
f(g(x), g(y)) -> h(g(y), x, g(y))
h(g(x), y, z) -> f(y, h(x, y, z))
h(a, y, z) -> z
H(g(x), y, z) -> F(y, h(x, y, z))
F(g(x), a) -> F(x, g(a))
POL(g(x1)) = 1 + x1 POL(h(x1, x2, x3)) = 0 POL(a) = 0 POL(H(x1, x2, x3)) = 1 + x2 POL(f(x1, x2)) = 0 POL(F(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
H(g(x), y, z) -> H(x, y, z)
F(g(x), g(y)) -> H(g(y), x, g(y))
f(a, g(y)) -> g(g(y))
f(g(x), a) -> f(x, g(a))
f(g(x), g(y)) -> h(g(y), x, g(y))
h(g(x), y, z) -> f(y, h(x, y, z))
h(a, y, z) -> z
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Polynomial Ordering
H(g(x), y, z) -> H(x, y, z)
f(a, g(y)) -> g(g(y))
f(g(x), a) -> f(x, g(a))
f(g(x), g(y)) -> h(g(y), x, g(y))
h(g(x), y, z) -> f(y, h(x, y, z))
h(a, y, z) -> z
H(g(x), y, z) -> H(x, y, z)
POL(g(x1)) = 1 + x1 POL(H(x1, x2, x3)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Dependency Graph
f(a, g(y)) -> g(g(y))
f(g(x), a) -> f(x, g(a))
f(g(x), g(y)) -> h(g(y), x, g(y))
h(g(x), y, z) -> f(y, h(x, y, z))
h(a, y, z) -> z