Term Rewriting System R:
[y, x, z]
f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

F(.(nil, y)) -> F(y)
F(.(.(x, y), z)) -> F(.(x, .(y, z)))
G(.(x, nil)) -> G(x)
G(.(x, .(y, z))) -> G(.(.(x, y), z))

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳Remaining`

Dependency Pairs:

F(.(.(x, y), z)) -> F(.(x, .(y, z)))
F(.(nil, y)) -> F(y)

Rules:

f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))

The following dependency pair can be strictly oriented:

F(.(nil, y)) -> F(y)

The following rules can be oriented:

f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(g(x1)) =  x1 POL(nil) =  1 POL(.(x1, x2)) =  x1 + x2 POL(F(x1)) =  1 + x1 POL(f(x1)) =  x1

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
.(x1, x2) -> .(x1, x2)
f(x1) -> f(x1)
g(x1) -> g(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

F(.(.(x, y), z)) -> F(.(x, .(y, z)))

Rules:

f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))

• Dependency Pairs:

G(.(x, .(y, z))) -> G(.(.(x, y), z))
G(.(x, nil)) -> G(x)

Rules:

f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

F(.(.(x, y), z)) -> F(.(x, .(y, z)))

Rules:

f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))

• Dependency Pairs:

G(.(x, .(y, z))) -> G(.(.(x, y), z))
G(.(x, nil)) -> G(x)

Rules:

f(nil) -> nil
f(.(nil, y)) -> .(nil, f(y))
f(.(.(x, y), z)) -> f(.(x, .(y, z)))
g(nil) -> nil
g(.(x, nil)) -> .(g(x), nil)
g(.(x, .(y, z))) -> g(.(.(x, y), z))

Termination of R could not be shown.
Duration:
0:00 minutes