R
↳Dependency Pair Analysis
F(x, g(y, z)) -> F(x, y)
++'(x, g(y, z)) -> ++'(x, y)
MEM(g(x, y), z) -> MEM(x, z)
MEM(x, max(x)) -> NULL(x)
MAX(g(g(g(x, y), z), u)) -> MAX(g(g(x, y), z))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
F(x, g(y, z)) -> F(x, y)
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
F(x, g(y, z)) -> F(x, y)
POL(g(x1, x2)) = 1 + x1 POL(F(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
++'(x, g(y, z)) -> ++'(x, y)
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
++'(x, g(y, z)) -> ++'(x, y)
POL(++'(x1, x2)) = x2 POL(g(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
MEM(g(x, y), z) -> MEM(x, z)
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
MEM(g(x, y), z) -> MEM(x, z)
POL(MEM(x1, x2)) = x1 POL(g(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 4
↳Polo
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
MAX(g(g(g(x, y), z), u)) -> MAX(g(g(x, y), z))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
MAX(g(g(g(x, y), z), u)) -> MAX(g(g(x, y), z))
POL(MAX(x1)) = 1 + x1 POL(g(x1, x2)) = 1 + x1 POL(u) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 8
↳Dependency Graph
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)