R
↳Dependency Pair Analysis
F(x, g(y, z)) -> F(x, y)
++'(x, g(y, z)) -> ++'(x, y)
MEM(g(x, y), z) -> MEM(x, z)
MEM(x, max(x)) -> NULL(x)
MAX(g(g(g(x, y), z), u)) -> MAX(g(g(x, y), z))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
F(x, g(y, z)) -> F(x, y)
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
F(x, g(y, z)) -> F(x, y)
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
POL(false) = 0 POL(true) = 0 POL(or(x1, x2)) = x1 + x2 POL(not(x1)) = x1 POL(max'(x1, x2)) = x1 + x2 POL(u) = 0 POL(F(x1, x2)) = 1 + x1 + x2 POL(f(x1, x2)) = 1 + x1 + x2 POL(mem(x1, x2)) = x1 + x2 POL(g(x1, x2)) = 1 + x1 + x2 POL(null(x1)) = x1 POL(++(x1, x2)) = x1 + x2 POL(nil) = 0 POL(max(x1)) = x1
F(x1, x2) -> F(x1, x2)
g(x1, x2) -> g(x1, x2)
f(x1, x2) -> f(x1, x2)
++(x1, x2) -> ++(x1, x2)
null(x1) -> null(x1)
mem(x1, x2) -> mem(x1, x2)
or(x1, x2) -> or(x1, x2)
=(x1, x2) -> x1
max(x1) -> max(x1)
not(x1) -> not(x1)
max'(x1, x2) -> max'(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
++'(x, g(y, z)) -> ++'(x, y)
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
++'(x, g(y, z)) -> ++'(x, y)
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
POL(++'(x1, x2)) = 1 + x1 + x2 POL(false) = 0 POL(true) = 0 POL(or(x1, x2)) = x1 + x2 POL(not(x1)) = x1 POL(max'(x1, x2)) = x1 + x2 POL(u) = 0 POL(f(x1, x2)) = 1 + x1 + x2 POL(mem(x1, x2)) = x1 + x2 POL(g(x1, x2)) = 1 + x1 + x2 POL(null(x1)) = x1 POL(++(x1, x2)) = x1 + x2 POL(nil) = 0 POL(max(x1)) = x1
++'(x1, x2) -> ++'(x1, x2)
g(x1, x2) -> g(x1, x2)
f(x1, x2) -> f(x1, x2)
++(x1, x2) -> ++(x1, x2)
null(x1) -> null(x1)
mem(x1, x2) -> mem(x1, x2)
or(x1, x2) -> or(x1, x2)
=(x1, x2) -> x1
max(x1) -> max(x1)
not(x1) -> not(x1)
max'(x1, x2) -> max'(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳AFS
MEM(g(x, y), z) -> MEM(x, z)
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
MEM(g(x, y), z) -> MEM(x, z)
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
POL(false) = 0 POL(true) = 0 POL(or(x1, x2)) = x1 + x2 POL(not(x1)) = x1 POL(max'(x1, x2)) = x1 + x2 POL(u) = 0 POL(f(x1, x2)) = 1 + x1 + x2 POL(MEM(x1, x2)) = 1 + x1 + x2 POL(mem(x1, x2)) = x1 + x2 POL(g(x1, x2)) = 1 + x1 + x2 POL(null(x1)) = x1 POL(++(x1, x2)) = x1 + x2 POL(nil) = 0 POL(max(x1)) = x1
MEM(x1, x2) -> MEM(x1, x2)
g(x1, x2) -> g(x1, x2)
f(x1, x2) -> f(x1, x2)
++(x1, x2) -> ++(x1, x2)
null(x1) -> null(x1)
mem(x1, x2) -> mem(x1, x2)
or(x1, x2) -> or(x1, x2)
=(x1, x2) -> x1
max(x1) -> max(x1)
not(x1) -> not(x1)
max'(x1, x2) -> max'(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 7
↳Dependency Graph
→DP Problem 4
↳AFS
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Argument Filtering and Ordering
MAX(g(g(g(x, y), z), u)) -> MAX(g(g(x, y), z))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
MAX(g(g(g(x, y), z), u)) -> MAX(g(g(x, y), z))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)
POL(false) = 0 POL(true) = 0 POL(or(x1, x2)) = x1 + x2 POL(max'(x1, x2)) = x1 + x2 POL(not(x1)) = x1 POL(u) = 1 POL(f(x1, x2)) = x1 + x2 POL(mem(x1, x2)) = x1 + x2 POL(MAX(x1)) = 1 + x1 POL(g(x1, x2)) = x1 + x2 POL(null(x1)) = x1 POL(++(x1, x2)) = x1 + x2 POL(nil) = 0 POL(max(x1)) = x1
MAX(x1) -> MAX(x1)
g(x1, x2) -> g(x1, x2)
f(x1, x2) -> f(x1, x2)
++(x1, x2) -> ++(x1, x2)
null(x1) -> null(x1)
mem(x1, x2) -> mem(x1, x2)
or(x1, x2) -> or(x1, x2)
=(x1, x2) -> x1
max(x1) -> max(x1)
not(x1) -> not(x1)
max'(x1, x2) -> max'(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳AFS
→DP Problem 8
↳Dependency Graph
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
++(x, nil) -> x
++(x, g(y, z)) -> g(++(x, y), z)
null(nil) -> true
null(g(x, y)) -> false
mem(nil, y) -> false
mem(g(x, y), z) -> or(=(y, z), mem(x, z))
mem(x, max(x)) -> not(null(x))
max(g(g(nil, x), y)) -> max'(x, y)
max(g(g(g(x, y), z), u)) -> max'(max(g(g(x, y), z)), u)