rev(a) -> a

rev(b) -> b

rev(++(

rev(++(

R

↳Dependency Pair Analysis

REV(++(x,y)) -> REV(y)

REV(++(x,y)) -> REV(x)

REV(++(x,x)) -> REV(x)

Furthermore,

R

↳DPs

→DP Problem 1

↳Argument Filtering and Ordering

**REV(++( x, x)) -> REV(x)**

rev(a) -> a

rev(b) -> b

rev(++(x,y)) -> ++(rev(y), rev(x))

rev(++(x,x)) -> rev(x)

The following dependency pairs can be strictly oriented:

REV(++(x,x)) -> REV(x)

REV(++(x,y)) -> REV(x)

REV(++(x,y)) -> REV(y)

The following rules can be oriented:

rev(a) -> a

rev(b) -> b

rev(++(x,y)) -> ++(rev(y), rev(x))

rev(++(x,x)) -> rev(x)

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(rev(x)_{1})= x _{1}_{ }^{ }_{ }^{ }POL(REV(x)_{1})= 1 + x _{1}_{ }^{ }_{ }^{ }POL(b)= 0 _{ }^{ }_{ }^{ }POL(++(x)_{1}, x_{2})= 1 + x _{1}+ x_{2}_{ }^{ }_{ }^{ }POL(a)= 0 _{ }^{ }

resulting in one new DP problem.

Used Argument Filtering System:

REV(x) -> REV(_{1}x)_{1}

++(x,_{1}x) -> ++(_{2}x,_{1}x)_{2}

rev(x) -> rev(_{1}x)_{1}

R

↳DPs

→DP Problem 1

↳AFS

→DP Problem 2

↳Dependency Graph

rev(a) -> a

rev(b) -> b

rev(++(x,y)) -> ++(rev(y), rev(x))

rev(++(x,x)) -> rev(x)

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes