Term Rewriting System R:
[x, y, z]
rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

REV(++(x, y)) -> REV1(x, y)
REV(++(x, y)) -> REV2(x, y)
REV1(x, ++(y, z)) -> REV1(y, z)
REV2(x, ++(y, z)) -> REV(++(x, rev(rev2(y, z))))
REV2(x, ++(y, z)) -> REV(rev2(y, z))
REV2(x, ++(y, z)) -> REV2(y, z)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
Nar


Dependency Pair:

REV1(x, ++(y, z)) -> REV1(y, z)


Rules:


rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))





The following dependency pair can be strictly oriented:

REV1(x, ++(y, z)) -> REV1(y, z)


There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(REV1(x1, x2))=  x1 + x2  
  POL(++(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
REV1(x1, x2) -> REV1(x1, x2)
++(x1, x2) -> ++(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Nar


Dependency Pair:


Rules:


rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Narrowing Transformation


Dependency Pairs:

REV2(x, ++(y, z)) -> REV2(y, z)
REV2(x, ++(y, z)) -> REV(rev2(y, z))
REV2(x, ++(y, z)) -> REV(++(x, rev(rev2(y, z))))
REV(++(x, y)) -> REV2(x, y)


Rules:


rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

REV2(x, ++(y, z)) -> REV(rev2(y, z))
two new Dependency Pairs are created:

REV2(x, ++(y', nil)) -> REV(nil)
REV2(x, ++(y0, ++(y'', z''))) -> REV(rev(++(y0, rev(rev2(y'', z'')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Nar
           →DP Problem 4
Narrowing Transformation


Dependency Pairs:

REV2(x, ++(y0, ++(y'', z''))) -> REV(rev(++(y0, rev(rev2(y'', z'')))))
REV(++(x, y)) -> REV2(x, y)
REV2(x, ++(y, z)) -> REV(++(x, rev(rev2(y, z))))
REV2(x, ++(y, z)) -> REV2(y, z)


Rules:


rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

REV2(x, ++(y0, ++(y'', z''))) -> REV(rev(++(y0, rev(rev2(y'', z'')))))
three new Dependency Pairs are created:

REV2(x, ++(y0', ++(y''', z'''))) -> REV(++(rev1(y0', rev(rev2(y''', z'''))), rev2(y0', rev(rev2(y''', z''')))))
REV2(x, ++(y0, ++(y''', nil))) -> REV(rev(++(y0, rev(nil))))
REV2(x, ++(y0, ++(y''', ++(y', z')))) -> REV(rev(++(y0, rev(rev(++(y''', rev(rev2(y', z'))))))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 5
Argument Filtering and Ordering


Dependency Pairs:

REV2(x, ++(y0, ++(y''', ++(y', z')))) -> REV(rev(++(y0, rev(rev(++(y''', rev(rev2(y', z'))))))))
REV2(x, ++(y0, ++(y''', nil))) -> REV(rev(++(y0, rev(nil))))
REV2(x, ++(y0', ++(y''', z'''))) -> REV(++(rev1(y0', rev(rev2(y''', z'''))), rev2(y0', rev(rev2(y''', z''')))))
REV2(x, ++(y, z)) -> REV2(y, z)
REV2(x, ++(y, z)) -> REV(++(x, rev(rev2(y, z))))
REV(++(x, y)) -> REV2(x, y)


Rules:


rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))





The following dependency pairs can be strictly oriented:

REV2(x, ++(y0, ++(y''', ++(y', z')))) -> REV(rev(++(y0, rev(rev(++(y''', rev(rev2(y', z'))))))))
REV2(x, ++(y0, ++(y''', nil))) -> REV(rev(++(y0, rev(nil))))
REV2(x, ++(y0', ++(y''', z'''))) -> REV(++(rev1(y0', rev(rev2(y''', z'''))), rev2(y0', rev(rev2(y''', z''')))))
REV2(x, ++(y, z)) -> REV2(y, z)
REV(++(x, y)) -> REV2(x, y)


The following usable rules w.r.t. to the AFS can be oriented:

rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))
rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(rev(x1))=  x1  
  POL(REV(x1))=  x1  
  POL(++(x1))=  1 + x1  
  POL(nil)=  0  

resulting in one new DP problem.
Used Argument Filtering System:
REV(x1) -> REV(x1)
REV2(x1, x2) -> x2
++(x1, x2) -> ++(x2)
rev(x1) -> rev(x1)
rev2(x1, x2) -> x2


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Nar
           →DP Problem 4
Nar
             ...
               →DP Problem 6
Dependency Graph


Dependency Pair:

REV2(x, ++(y, z)) -> REV(++(x, rev(rev2(y, z))))


Rules:


rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:04 minutes