R
↳Dependency Pair Analysis
REV(++(x, y)) -> REV1(x, y)
REV(++(x, y)) -> REV2(x, y)
REV1(x, ++(y, z)) -> REV1(y, z)
REV2(x, ++(y, z)) -> REV(++(x, rev(rev2(y, z))))
REV2(x, ++(y, z)) -> REV(rev2(y, z))
REV2(x, ++(y, z)) -> REV2(y, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Nar
REV1(x, ++(y, z)) -> REV1(y, z)
rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))
REV1(x, ++(y, z)) -> REV1(y, z)
POL(REV1(x1, x2)) = x2 POL(++(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Nar
rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Narrowing Transformation
REV2(x, ++(y, z)) -> REV2(y, z)
REV2(x, ++(y, z)) -> REV(rev2(y, z))
REV2(x, ++(y, z)) -> REV(++(x, rev(rev2(y, z))))
REV(++(x, y)) -> REV2(x, y)
rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))
two new Dependency Pairs are created:
REV2(x, ++(y, z)) -> REV(rev2(y, z))
REV2(x, ++(y', nil)) -> REV(nil)
REV2(x, ++(y0, ++(y'', z''))) -> REV(rev(++(y0, rev(rev2(y'', z'')))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 4
↳Narrowing Transformation
REV2(x, ++(y0, ++(y'', z''))) -> REV(rev(++(y0, rev(rev2(y'', z'')))))
REV(++(x, y)) -> REV2(x, y)
REV2(x, ++(y, z)) -> REV(++(x, rev(rev2(y, z))))
REV2(x, ++(y, z)) -> REV2(y, z)
rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))
three new Dependency Pairs are created:
REV2(x, ++(y0, ++(y'', z''))) -> REV(rev(++(y0, rev(rev2(y'', z'')))))
REV2(x, ++(y0', ++(y''', z'''))) -> REV(++(rev1(y0', rev(rev2(y''', z'''))), rev2(y0', rev(rev2(y''', z''')))))
REV2(x, ++(y0, ++(y''', nil))) -> REV(rev(++(y0, rev(nil))))
REV2(x, ++(y0, ++(y''', ++(y', z')))) -> REV(rev(++(y0, rev(rev(++(y''', rev(rev2(y', z'))))))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 4
↳Nar
...
→DP Problem 5
↳Polynomial Ordering
REV2(x, ++(y0, ++(y''', ++(y', z')))) -> REV(rev(++(y0, rev(rev(++(y''', rev(rev2(y', z'))))))))
REV2(x, ++(y0, ++(y''', nil))) -> REV(rev(++(y0, rev(nil))))
REV2(x, ++(y0', ++(y''', z'''))) -> REV(++(rev1(y0', rev(rev2(y''', z'''))), rev2(y0', rev(rev2(y''', z''')))))
REV2(x, ++(y, z)) -> REV2(y, z)
REV2(x, ++(y, z)) -> REV(++(x, rev(rev2(y, z))))
REV(++(x, y)) -> REV2(x, y)
rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))
REV2(x, ++(y0, ++(y''', ++(y', z')))) -> REV(rev(++(y0, rev(rev(++(y''', rev(rev2(y', z'))))))))
REV2(x, ++(y0, ++(y''', nil))) -> REV(rev(++(y0, rev(nil))))
REV2(x, ++(y0', ++(y''', z'''))) -> REV(++(rev1(y0', rev(rev2(y''', z'''))), rev2(y0', rev(rev2(y''', z''')))))
REV2(x, ++(y, z)) -> REV2(y, z)
REV(++(x, y)) -> REV2(x, y)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))
rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
POL(rev2(x1, x2)) = x2 POL(rev(x1)) = x1 POL(REV(x1)) = x1 POL(rev1(x1, x2)) = 0 POL(++(x1, x2)) = 1 + x2 POL(REV2(x1, x2)) = x2 POL(nil) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Nar
→DP Problem 4
↳Nar
...
→DP Problem 6
↳Dependency Graph
REV2(x, ++(y, z)) -> REV(++(x, rev(rev2(y, z))))
rev(nil) -> nil
rev(++(x, y)) -> ++(rev1(x, y), rev2(x, y))
rev1(x, nil) -> x
rev1(x, ++(y, z)) -> rev1(y, z)
rev2(x, nil) -> nil
rev2(x, ++(y, z)) -> rev(++(x, rev(rev2(y, z))))