Term Rewriting System R:
[x, y, z]
not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

NOT(and(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(y)
NOT(or(x, y)) -> AND(not(x), not(y))
NOT(or(x, y)) -> NOT(x)
NOT(or(x, y)) -> NOT(y)
AND(x, or(y, z)) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pairs:

AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)

Rules:

not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))

• Dependency Pairs:

NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)

Rules:

not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pairs:

AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)

Rules:

not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))

• Dependency Pairs:

NOT(or(x, y)) -> NOT(y)
NOT(or(x, y)) -> NOT(x)
NOT(and(x, y)) -> NOT(y)
NOT(and(x, y)) -> NOT(x)

Rules:

not(and(x, y)) -> or(not(x), not(y))
not(or(x, y)) -> and(not(x), not(y))
and(x, or(y, z)) -> or(and(x, y), and(x, z))

Termination of R could not be shown.
Duration:
0:00 minutes