R
↳Dependency Pair Analysis
AND(x, or(y, z)) -> OR(and(x, y), and(x, z))
AND(x, or(y, z)) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)
AND(x, and(y, y)) -> AND(x, y)
OR(x, or(y, y)) -> OR(x, y)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Remaining
OR(x, or(y, y)) -> OR(x, y)
and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)
OR(x, or(y, y)) -> OR(x, y)
and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)
POL(and(x1, x2)) = x1 + x2 POL(false) = 0 POL(OR(x1, x2)) = x2 POL(or(x1, x2)) = 1 + x1 POL(true) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Remaining
and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Remaining Obligation(s)
AND(x, and(y, y)) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)
and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)