Term Rewriting System R:
[x, y, z]
and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

AND(x, or(y, z)) -> OR(and(x, y), and(x, z))
AND(x, or(y, z)) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)
AND(x, and(y, y)) -> AND(x, y)
OR(x, or(y, y)) -> OR(x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Remaining


Dependency Pair:

OR(x, or(y, y)) -> OR(x, y)


Rules:


and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)





The following dependency pair can be strictly oriented:

OR(x, or(y, y)) -> OR(x, y)


Additionally, the following rules can be oriented:

and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(and(x1, x2))=  x1 + x2  
  POL(false)=  0  
  POL(OR(x1, x2))=  x2  
  POL(or(x1, x2))=  1 + x1  
  POL(true)=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Remaining


Dependency Pair:


Rules:


and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

AND(x, and(y, y)) -> AND(x, y)
AND(x, or(y, z)) -> AND(x, z)
AND(x, or(y, z)) -> AND(x, y)


Rules:


and(x, or(y, z)) -> or(and(x, y), and(x, z))
and(x, and(y, y)) -> and(x, y)
and(x, true) -> x
and(false, y) -> false
and(x, x) -> x
or(or(x, y), and(y, z)) -> or(x, y)
or(x, and(x, y)) -> x
or(true, y) -> true
or(x, false) -> x
or(x, x) -> x
or(x, or(y, y)) -> or(x, y)




Termination of R could not be shown.
Duration:
0:00 minutes