Term Rewriting System R:
[x, y]
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
+'(s(x), y) -> S(+(x, y))
+'(s(x), y) -> +'(x, y)
+'(p(x), y) -> P(+(x, y))
+'(p(x), y) -> +'(x, y)
MINUS(s(x)) -> P(minus(x))
MINUS(s(x)) -> MINUS(x)
MINUS(p(x)) -> S(minus(x))
MINUS(p(x)) -> MINUS(x)
*'(s(x), y) -> +'(*(x, y), y)
*'(s(x), y) -> *'(x, y)
*'(p(x), y) -> +'(*(x, y), minus(y))
*'(p(x), y) -> *'(x, y)
*'(p(x), y) -> MINUS(y)
Furthermore, R contains three SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
Dependency Pairs:
+'(p(x), y) -> +'(x, y)
+'(s(x), y) -> +'(x, y)
Rules:
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
We number the DPs as follows:
- +'(p(x), y) -> +'(x, y)
- +'(s(x), y) -> +'(x, y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
p(x1) -> p(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
Dependency Pairs:
MINUS(p(x)) -> MINUS(x)
MINUS(s(x)) -> MINUS(x)
Rules:
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
We number the DPs as follows:
- MINUS(p(x)) -> MINUS(x)
- MINUS(s(x)) -> MINUS(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
p(x1) -> p(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
Dependency Pairs:
*'(p(x), y) -> *'(x, y)
*'(s(x), y) -> *'(x, y)
Rules:
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))
We number the DPs as follows:
- *'(p(x), y) -> *'(x, y)
- *'(s(x), y) -> *'(x, y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
p(x1) -> p(x1)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:00 minutes