Term Rewriting System R:
[x, y]
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

+'(s(x), y) -> S(+(x, y))
+'(s(x), y) -> +'(x, y)
+'(p(x), y) -> P(+(x, y))
+'(p(x), y) -> +'(x, y)
MINUS(s(x)) -> P(minus(x))
MINUS(s(x)) -> MINUS(x)
MINUS(p(x)) -> S(minus(x))
MINUS(p(x)) -> MINUS(x)
*'(s(x), y) -> +'(*(x, y), y)
*'(s(x), y) -> *'(x, y)
*'(p(x), y) -> +'(*(x, y), minus(y))
*'(p(x), y) -> *'(x, y)
*'(p(x), y) -> MINUS(y)

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pairs:

+'(p(x), y) -> +'(x, y)
+'(s(x), y) -> +'(x, y)

Rules:

p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

The following dependency pair can be strictly oriented:

+'(p(x), y) -> +'(x, y)

There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(s(x1)) =  x1 POL(+'(x1, x2)) =  x1 + x2 POL(p(x1)) =  1 + x1

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
p(x1) -> p(x1)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

+'(s(x), y) -> +'(x, y)

Rules:

p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

The following dependency pair can be strictly oriented:

+'(s(x), y) -> +'(x, y)

There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(s(x1)) =  1 + x1 POL(+'(x1, x2)) =  x1 + x2

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 4`
`             ↳AFS`
`             ...`
`               →DP Problem 5`
`                 ↳Dependency Graph`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

Rules:

p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pairs:

MINUS(p(x)) -> MINUS(x)
MINUS(s(x)) -> MINUS(x)

Rules:

p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

The following dependency pair can be strictly oriented:

MINUS(p(x)) -> MINUS(x)

There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MINUS(x1)) =  x1 POL(s(x1)) =  x1 POL(p(x1)) =  1 + x1

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1) -> MINUS(x1)
p(x1) -> p(x1)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`           →DP Problem 6`
`             ↳Argument Filtering and Ordering`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

MINUS(s(x)) -> MINUS(x)

Rules:

p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

The following dependency pair can be strictly oriented:

MINUS(s(x)) -> MINUS(x)

There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MINUS(x1)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1) -> MINUS(x1)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`           →DP Problem 6`
`             ↳AFS`
`             ...`
`               →DP Problem 7`
`                 ↳Dependency Graph`
`       →DP Problem 3`
`         ↳AFS`

Dependency Pair:

Rules:

p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Argument Filtering and Ordering`

Dependency Pairs:

*'(p(x), y) -> *'(x, y)
*'(s(x), y) -> *'(x, y)

Rules:

p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

The following dependency pair can be strictly oriented:

*'(s(x), y) -> *'(x, y)

There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(*'(x1, x2)) =  x1 + x2 POL(s(x1)) =  1 + x1 POL(p(x1)) =  x1

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
s(x1) -> s(x1)
p(x1) -> p(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`
`           →DP Problem 8`
`             ↳Argument Filtering and Ordering`

Dependency Pair:

*'(p(x), y) -> *'(x, y)

Rules:

p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

The following dependency pair can be strictly oriented:

*'(p(x), y) -> *'(x, y)

There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(*'(x1, x2)) =  x1 + x2 POL(p(x1)) =  1 + x1

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
p(x1) -> p(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳AFS`
`           →DP Problem 8`
`             ↳AFS`
`             ...`
`               →DP Problem 9`
`                 ↳Dependency Graph`

Dependency Pair:

Rules:

p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes