Term Rewriting System R:
[x, y]
p(s(x)) -> x
s(p(x)) -> x
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(s(x), y) -> S(+(x, y))
+'(s(x), y) -> +'(x, y)
+'(p(x), y) -> P(+(x, y))
+'(p(x), y) -> +'(x, y)
MINUS(s(x)) -> P(minus(x))
MINUS(s(x)) -> MINUS(x)
MINUS(p(x)) -> S(minus(x))
MINUS(p(x)) -> MINUS(x)
*'(s(x), y) -> +'(*(x, y), y)
*'(s(x), y) -> *'(x, y)
*'(p(x), y) -> +'(*(x, y), minus(y))
*'(p(x), y) -> *'(x, y)
*'(p(x), y) -> MINUS(y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)




The following remains to be proven:

Termination of R could not be shown.
Duration:
0:00 minutes