Term Rewriting System R:
[x, y, z]
*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

*'(x, *(y, z)) -> *'(otimes(x, y), z)
*'(+(x, y), z) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)
*'(x, oplus(y, z)) -> *'(x, y)
*'(x, oplus(y, z)) -> *'(x, z)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

*'(x, oplus(y, z)) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)
*'(+(x, y), z) -> *'(x, z)
*'(x, oplus(y, z)) -> *'(x, y)
*'(x, *(y, z)) -> *'(otimes(x, y), z)


Rules:


*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))





The following dependency pairs can be strictly oriented:

*'(x, oplus(y, z)) -> *'(x, z)
*'(x, oplus(y, z)) -> *'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(*'(x1, x2))=  x2  
  POL(otimes(x1, x2))=  0  
  POL(*(x1, x2))=  x2  
  POL(oplus(x1, x2))=  1 + x1 + x2  
  POL(+(x1, x2))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Dependency Graph


Dependency Pairs:

*'(+(x, y), z) -> *'(y, z)
*'(+(x, y), z) -> *'(x, z)
*'(x, *(y, z)) -> *'(otimes(x, y), z)


Rules:


*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))





Using the Dependency Graph the DP problem was split into 2 DP problems.


   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
DGraph
             ...
               →DP Problem 3
Polynomial Ordering


Dependency Pair:

*'(x, *(y, z)) -> *'(otimes(x, y), z)


Rules:


*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))





The following dependency pair can be strictly oriented:

*'(x, *(y, z)) -> *'(otimes(x, y), z)


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(*'(x1, x2))=  x2  
  POL(otimes(x1, x2))=  0  
  POL(*(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
DGraph
             ...
               →DP Problem 5
Dependency Graph


Dependency Pair:


Rules:


*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
DGraph
             ...
               →DP Problem 4
Polynomial Ordering


Dependency Pairs:

*'(+(x, y), z) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)


Rules:


*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))





The following dependency pairs can be strictly oriented:

*'(+(x, y), z) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(*'(x1, x2))=  x1  
  POL(+(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.


Termination of R successfully shown.
Duration:
0:00 minutes