R
↳Dependency Pair Analysis
*'(x, *(y, z)) -> *'(otimes(x, y), z)
*'(+(x, y), z) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)
*'(x, oplus(y, z)) -> *'(x, y)
*'(x, oplus(y, z)) -> *'(x, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
*'(x, oplus(y, z)) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)
*'(+(x, y), z) -> *'(x, z)
*'(x, oplus(y, z)) -> *'(x, y)
*'(x, *(y, z)) -> *'(otimes(x, y), z)
*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))
*'(+(x, y), z) -> *'(y, z)
*'(+(x, y), z) -> *'(x, z)
*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))
POL(*'(x1, x2)) = x1 POL(1) = 0 POL(otimes(x1, x2)) = 0 POL(*(x1, x2)) = x2 POL(oplus(x1, x2)) = 0 POL(+(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Remaining Obligation(s)
*'(x, oplus(y, z)) -> *'(x, z)
*'(x, oplus(y, z)) -> *'(x, y)
*'(x, *(y, z)) -> *'(otimes(x, y), z)
*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))