*(i(

*(1,

*(

*(*(

R

↳Dependency Pair Analysis

*'(*(x,y),z) -> *'(x, *(y,z))

*'(*(x,y),z) -> *'(y,z)

Furthermore,

R

↳DPs

→DP Problem 1

↳Polynomial Ordering

***'(*( x, y), z) -> *'(y, z)**

*(i(x),x) -> 1

*(1,y) ->y

*(x, 0) -> 0

*(*(x,y),z) -> *(x, *(y,z))

The following dependency pairs can be strictly oriented:

*'(*(x,y),z) -> *'(y,z)

*'(*(x,y),z) -> *'(x, *(y,z))

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(i(x)_{1})= 0 _{ }^{ }_{ }^{ }POL(0)= 0 _{ }^{ }_{ }^{ }POL(*'(x)_{1}, x_{2})= x _{1}_{ }^{ }_{ }^{ }POL(1)= 0 _{ }^{ }_{ }^{ }POL(*(x)_{1}, x_{2})= 1 + x _{1}+ x_{2}_{ }^{ }

resulting in one new DP problem.

R

↳DPs

→DP Problem 1

↳Polo

→DP Problem 2

↳Dependency Graph

*(i(x),x) -> 1

*(1,y) ->y

*(x, 0) -> 0

*(*(x,y),z) -> *(x, *(y,z))

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes