*(i(

*(1,

*(

*(*(

R

↳Dependency Pair Analysis

*'(*(x,y),z) -> *'(x, *(y,z))

*'(*(x,y),z) -> *'(y,z)

Furthermore,

R

↳DPs

→DP Problem 1

↳Argument Filtering and Ordering

***'(*( x, y), z) -> *'(y, z)**

*(i(x),x) -> 1

*(1,y) ->y

*(x, 0) -> 0

*(*(x,y),z) -> *(x, *(y,z))

The following dependency pairs can be strictly oriented:

*'(*(x,y),z) -> *'(y,z)

*'(*(x,y),z) -> *'(x, *(y,z))

The following rules can be oriented:

*(i(x),x) -> 1

*(1,y) ->y

*(x, 0) -> 0

*(*(x,y),z) -> *(x, *(y,z))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:

{*', *, 1}

resulting in one new DP problem.

Used Argument Filtering System:

*'(x,_{1}x) -> *'(_{2}x,_{1}x)_{2}

*(x,_{1}x) -> *(_{2}x,_{1}x)_{2}

i(x) -> i(_{1}x)_{1}

R

↳DPs

→DP Problem 1

↳AFS

→DP Problem 2

↳Dependency Graph

*(i(x),x) -> 1

*(1,y) ->y

*(x, 0) -> 0

*(*(x,y),z) -> *(x, *(y,z))

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes