Term Rewriting System R:
[x, y, z]
*(x, 1) -> x
*(1, y) -> y
*(i(x), x) -> 1
*(x, i(x)) -> 1
*(x, *(y, z)) -> *(*(x, y), z)
*(*(x, y), i(y)) -> x
*(*(x, i(y)), y) -> x
*(k(x, y), k(y, x)) -> 1
*(*(i(x), k(y, z)), x) -> k(*(*(i(x), y), x), *(*(i(x), z), x))
i(1) -> 1
i(i(x)) -> x
i(*(x, y)) -> *(i(y), i(x))
k(x, 1) -> 1
k(x, x) -> 1
k(*(x, i(y)), *(y, i(x))) -> 1
Termination of R to be shown.
   R
     ↳Dependency Pair Analysis
R contains the following Dependency Pairs: 
*'(x, *(y, z)) -> *'(*(x, y), z)
*'(x, *(y, z)) -> *'(x, y)
*'(*(i(x), k(y, z)), x) -> K(*(*(i(x), y), x), *(*(i(x), z), x))
*'(*(i(x), k(y, z)), x) -> *'(*(i(x), y), x)
*'(*(i(x), k(y, z)), x) -> *'(i(x), y)
*'(*(i(x), k(y, z)), x) -> *'(*(i(x), z), x)
*'(*(i(x), k(y, z)), x) -> *'(i(x), z)
I(*(x, y)) -> *'(i(y), i(x))
I(*(x, y)) -> I(y)
I(*(x, y)) -> I(x)
Furthermore, R contains two SCCs.
   R
     ↳DPs
       →DP Problem 1
         ↳Size-Change Principle
       →DP Problem 2
         ↳Polo
Dependency Pairs:
I(*(x, y)) -> I(x)
I(*(x, y)) -> I(y)
Rules:
*(x, 1) -> x
*(1, y) -> y
*(i(x), x) -> 1
*(x, i(x)) -> 1
*(x, *(y, z)) -> *(*(x, y), z)
*(*(x, y), i(y)) -> x
*(*(x, i(y)), y) -> x
*(k(x, y), k(y, x)) -> 1
*(*(i(x), k(y, z)), x) -> k(*(*(i(x), y), x), *(*(i(x), z), x))
i(1) -> 1
i(i(x)) -> x
i(*(x, y)) -> *(i(y), i(x))
k(x, 1) -> 1
k(x, x) -> 1
k(*(x, i(y)), *(y, i(x))) -> 1
We number the DPs as follows: 
- I(*(x, y)) -> I(x)
 
- I(*(x, y)) -> I(y)
 
and get the following Size-Change Graph(s): 
which lead(s) to this/these maximal multigraph(s): 
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
 with Argument Filtering System:
*(x1, x2) -> *(x1, x2)
We obtain no new DP problems.
   R
     ↳DPs
       →DP Problem 1
         ↳SCP
       →DP Problem 2
         ↳Polynomial Ordering
Dependency Pairs:
*'(*(i(x), k(y, z)), x) -> *'(i(x), z)
*'(*(i(x), k(y, z)), x) -> *'(*(i(x), z), x)
*'(*(i(x), k(y, z)), x) -> *'(i(x), y)
*'(*(i(x), k(y, z)), x) -> *'(*(i(x), y), x)
*'(x, *(y, z)) -> *'(x, y)
*'(x, *(y, z)) -> *'(*(x, y), z)
Rules:
*(x, 1) -> x
*(1, y) -> y
*(i(x), x) -> 1
*(x, i(x)) -> 1
*(x, *(y, z)) -> *(*(x, y), z)
*(*(x, y), i(y)) -> x
*(*(x, i(y)), y) -> x
*(k(x, y), k(y, x)) -> 1
*(*(i(x), k(y, z)), x) -> k(*(*(i(x), y), x), *(*(i(x), z), x))
i(1) -> 1
i(i(x)) -> x
i(*(x, y)) -> *(i(y), i(x))
k(x, 1) -> 1
k(x, x) -> 1
k(*(x, i(y)), *(y, i(x))) -> 1
The following dependency pairs can be strictly oriented:
*'(*(i(x), k(y, z)), x) -> *'(i(x), z)
*'(*(i(x), k(y, z)), x) -> *'(*(i(x), z), x)
*'(*(i(x), k(y, z)), x) -> *'(i(x), y)
*'(*(i(x), k(y, z)), x) -> *'(*(i(x), y), x)
Additionally, the following usable rules w.r.t. the implicit AFS can be oriented: 
i(1) -> 1
i(i(x)) -> x
i(*(x, y)) -> *(i(y), i(x))
*(x, 1) -> x
*(1, y) -> y
*(i(x), x) -> 1
*(x, i(x)) -> 1
*(x, *(y, z)) -> *(*(x, y), z)
*(*(x, y), i(y)) -> x
*(*(x, i(y)), y) -> x
*(k(x, y), k(y, x)) -> 1
*(*(i(x), k(y, z)), x) -> k(*(*(i(x), y), x), *(*(i(x), z), x))
k(x, 1) -> 1
k(x, x) -> 1
k(*(x, i(y)), *(y, i(x))) -> 1
Used ordering: Polynomial ordering with Polynomial interpretation:
|   POL(i(x1)) | =  x1   | 
|   POL(*'(x1, x2)) | =  1 + x1 + x1·x2 + x2   | 
|   POL(1) | =  0   | 
|   POL(*(x1, x2)) | =  x1 + x1·x2 + x2   | 
|   POL(k(x1, x2)) | =  1 + x1 + x2   | 
 resulting in one new DP problem.
   R
     ↳DPs
       →DP Problem 1
         ↳SCP
       →DP Problem 2
         ↳Polo
           →DP Problem 3
             ↳Size-Change Principle
Dependency Pairs:
*'(x, *(y, z)) -> *'(x, y)
*'(x, *(y, z)) -> *'(*(x, y), z)
Rules:
*(x, 1) -> x
*(1, y) -> y
*(i(x), x) -> 1
*(x, i(x)) -> 1
*(x, *(y, z)) -> *(*(x, y), z)
*(*(x, y), i(y)) -> x
*(*(x, i(y)), y) -> x
*(k(x, y), k(y, x)) -> 1
*(*(i(x), k(y, z)), x) -> k(*(*(i(x), y), x), *(*(i(x), z), x))
i(1) -> 1
i(i(x)) -> x
i(*(x, y)) -> *(i(y), i(x))
k(x, 1) -> 1
k(x, x) -> 1
k(*(x, i(y)), *(y, i(x))) -> 1
We number the DPs as follows: 
- *'(x, *(y, z)) -> *'(x, y)
 
- *'(x, *(y, z)) -> *'(*(x, y), z)
 
and get the following Size-Change Graph(s): 
which lead(s) to this/these maximal multigraph(s): 
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
We obtain no new DP problems.
Termination of R successfully shown.
Duration: 
0:07 minutes