f(g(

R

↳Dependency Pair Analysis

F(g(x),y,y) -> F(x,x,y)

Furthermore,

R

↳DPs

→DP Problem 1

↳Argument Filtering and Ordering

**F(g( x), y, y) -> F(x, x, y)**

f(g(x),y,y) -> g(f(x,x,y))

The following dependency pair can be strictly oriented:

F(g(x),y,y) -> F(x,x,y)

The following rule can be oriented:

f(g(x),y,y) -> g(f(x,x,y))

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(g(x)_{1})= 1 + x _{1}_{ }^{ }

resulting in one new DP problem.

Used Argument Filtering System:

F(x,_{1}x,_{2}x) ->_{3}x_{1}

g(x) -> g(_{1}x)_{1}

f(x,_{1}x,_{2}x) ->_{3}x_{1}

R

↳DPs

→DP Problem 1

↳AFS

→DP Problem 2

↳Dependency Graph

f(g(x),y,y) -> g(f(x,x,y))

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes