R
↳Dependency Pair Analysis
A(a(x)) -> B(b(x))
A(a(x)) -> B(x)
B(b(a(x))) -> A(b(b(x)))
B(b(a(x))) -> B(b(x))
B(b(a(x))) -> B(x)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
B(b(a(x))) -> B(x)
B(b(a(x))) -> B(b(x))
A(a(x)) -> B(x)
B(b(a(x))) -> A(b(b(x)))
A(a(x)) -> B(b(x))
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
two new Dependency Pairs are created:
B(b(a(x))) -> A(b(b(x)))
B(b(a(a(x'')))) -> A(a(b(b(x''))))
B(b(a(b(a(x''))))) -> A(b(a(b(b(x'')))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
A(a(x)) -> B(x)
B(b(a(b(a(x''))))) -> A(b(a(b(b(x'')))))
A(a(x)) -> B(b(x))
B(b(a(a(x'')))) -> A(a(b(b(x''))))
B(b(a(x))) -> B(b(x))
B(b(a(x))) -> B(x)
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
two new Dependency Pairs are created:
B(b(a(b(a(x''))))) -> A(b(a(b(b(x'')))))
B(b(a(b(a(a(x')))))) -> A(b(a(a(b(b(x'))))))
B(b(a(b(a(b(a(x'))))))) -> A(b(a(b(a(b(b(x')))))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Polynomial Ordering
B(b(a(b(a(b(a(x'))))))) -> A(b(a(b(a(b(b(x')))))))
B(b(a(b(a(a(x')))))) -> A(b(a(a(b(b(x'))))))
A(a(x)) -> B(b(x))
B(b(a(a(x'')))) -> A(a(b(b(x''))))
B(b(a(x))) -> B(x)
B(b(a(x))) -> B(b(x))
A(a(x)) -> B(x)
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))
B(b(a(b(a(b(a(x'))))))) -> A(b(a(b(a(b(b(x')))))))
B(b(a(b(a(a(x')))))) -> A(b(a(a(b(b(x'))))))
A(a(x)) -> B(b(x))
B(b(a(a(x'')))) -> A(a(b(b(x''))))
B(b(a(x))) -> B(x)
B(b(a(x))) -> B(b(x))
A(a(x)) -> B(x)
b(b(a(x))) -> a(b(b(x)))
a(a(x)) -> b(b(x))
POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = 1 + x1 POL(A(x1)) = x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Dependency Graph
a(a(x)) -> b(b(x))
b(b(a(x))) -> a(b(b(x)))