Term Rewriting System R:
[x, u, v, z, y]
admit(x, nil) -> nil
admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) -> y

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

ADMIT(x, .(u, .(v, .(w, z)))) -> COND(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
ADMIT(x, .(u, .(v, .(w, z)))) -> ADMIT(carry(x, u, v), z)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Instantiation Transformation


Dependency Pair:

ADMIT(x, .(u, .(v, .(w, z)))) -> ADMIT(carry(x, u, v), z)


Rules:


admit(x, nil) -> nil
admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) -> y





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

ADMIT(x, .(u, .(v, .(w, z)))) -> ADMIT(carry(x, u, v), z)
one new Dependency Pair is created:

ADMIT(carry(x'', u''', v''), .(u'', .(v0, .(w, z'')))) -> ADMIT(carry(carry(x'', u''', v''), u'', v0), z'')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Instantiation Transformation


Dependency Pair:

ADMIT(carry(x'', u''', v''), .(u'', .(v0, .(w, z'')))) -> ADMIT(carry(carry(x'', u''', v''), u'', v0), z'')


Rules:


admit(x, nil) -> nil
admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) -> y





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

ADMIT(carry(x'', u''', v''), .(u'', .(v0, .(w, z'')))) -> ADMIT(carry(carry(x'', u''', v''), u'', v0), z'')
one new Dependency Pair is created:

ADMIT(carry(carry(x'''', u'''''', v''''), u''''', v''0), .(u''1, .(v0'', .(w, z'''')))) -> ADMIT(carry(carry(carry(x'''', u'''''', v''''), u''''', v''0), u''1, v0''), z'''')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 3
Polynomial Ordering


Dependency Pair:

ADMIT(carry(carry(x'''', u'''''', v''''), u''''', v''0), .(u''1, .(v0'', .(w, z'''')))) -> ADMIT(carry(carry(carry(x'''', u'''''', v''''), u''''', v''0), u''1, v0''), z'''')


Rules:


admit(x, nil) -> nil
admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) -> y





The following dependency pair can be strictly oriented:

ADMIT(carry(carry(x'''', u'''''', v''''), u''''', v''0), .(u''1, .(v0'', .(w, z'''')))) -> ADMIT(carry(carry(carry(x'''', u'''''', v''''), u''''', v''0), u''1, v0''), z'''')


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(carry(x1, x2, x3))=  0  
  POL(.(x1, x2))=  x1 + x2  
  POL(w)=  1  
  POL(ADMIT(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Inst
           →DP Problem 2
Inst
             ...
               →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


admit(x, nil) -> nil
admit(x, .(u, .(v, .(w, z)))) -> cond(=(sum(x, u, v), w), .(u, .(v, .(w, admit(carry(x, u, v), z)))))
cond(true, y) -> y





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes