R
↳Dependency Pair Analysis
FLATTEN(unit(x)) -> FLATTEN(x)
FLATTEN(++(x, y)) -> ++'(flatten(x), flatten(y))
FLATTEN(++(x, y)) -> FLATTEN(x)
FLATTEN(++(x, y)) -> FLATTEN(y)
FLATTEN(++(unit(x), y)) -> ++'(flatten(x), flatten(y))
FLATTEN(++(unit(x), y)) -> FLATTEN(x)
FLATTEN(++(unit(x), y)) -> FLATTEN(y)
REV(++(x, y)) -> ++'(rev(y), rev(x))
REV(++(x, y)) -> REV(y)
REV(++(x, y)) -> REV(x)
++'(++(x, y), z) -> ++'(x, ++(y, z))
++'(++(x, y), z) -> ++'(y, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
++'(++(x, y), z) -> ++'(y, z)
++'(++(x, y), z) -> ++'(x, ++(y, z))
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))
++'(++(x, y), z) -> ++'(y, z)
++'(++(x, y), z) -> ++'(x, ++(y, z))
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
POL(unit(x1)) = x1 POL(rev(x1)) = x1 POL(++'(x1, x2)) = 1 + x1 POL(flatten(x1)) = x1 POL(++(x1, x2)) = 1 + x1 + x2 POL(nil) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
FLATTEN(++(unit(x), y)) -> FLATTEN(y)
FLATTEN(++(unit(x), y)) -> FLATTEN(x)
FLATTEN(++(x, y)) -> FLATTEN(y)
FLATTEN(++(x, y)) -> FLATTEN(x)
FLATTEN(unit(x)) -> FLATTEN(x)
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))
FLATTEN(++(unit(x), y)) -> FLATTEN(y)
FLATTEN(++(unit(x), y)) -> FLATTEN(x)
FLATTEN(unit(x)) -> FLATTEN(x)
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
POL(unit(x1)) = 1 + x1 POL(rev(x1)) = x1 POL(flatten(x1)) = 0 POL(++(x1, x2)) = x1 + x2 POL(FLATTEN(x1)) = 1 + x1 POL(nil) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Polynomial Ordering
→DP Problem 3
↳Polo
FLATTEN(++(x, y)) -> FLATTEN(y)
FLATTEN(++(x, y)) -> FLATTEN(x)
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))
FLATTEN(++(x, y)) -> FLATTEN(y)
FLATTEN(++(x, y)) -> FLATTEN(x)
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
POL(unit(x1)) = x1 POL(rev(x1)) = x1 POL(flatten(x1)) = x1 POL(++(x1, x2)) = 1 + x1 + x2 POL(FLATTEN(x1)) = 1 + x1 POL(nil) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Polo
...
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳Polo
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
REV(++(x, y)) -> REV(x)
REV(++(x, y)) -> REV(y)
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))
REV(++(x, y)) -> REV(x)
REV(++(x, y)) -> REV(y)
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
POL(unit(x1)) = x1 POL(rev(x1)) = x1 POL(REV(x1)) = 1 + x1 POL(flatten(x1)) = x1 POL(++(x1, x2)) = 1 + x1 + x2 POL(nil) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 7
↳Dependency Graph
flatten(nil) -> nil
flatten(unit(x)) -> flatten(x)
flatten(++(x, y)) -> ++(flatten(x), flatten(y))
flatten(++(unit(x), y)) -> ++(flatten(x), flatten(y))
flatten(flatten(x)) -> flatten(x)
rev(nil) -> nil
rev(unit(x)) -> unit(x)
rev(++(x, y)) -> ++(rev(y), rev(x))
rev(rev(x)) -> x
++(x, nil) -> x
++(nil, y) -> y
++(++(x, y), z) -> ++(x, ++(y, z))