R
↳Dependency Pair Analysis
NORM(g(x, y)) -> NORM(x)
F(x, g(y, z)) -> F(x, y)
REM(g(x, y), s(z)) -> REM(x, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
NORM(g(x, y)) -> NORM(x)
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
NORM(g(x, y)) -> NORM(x)
POL(g(x1, x2)) = 1 + x1 POL(NORM(x1)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
F(x, g(y, z)) -> F(x, y)
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
F(x, g(y, z)) -> F(x, y)
POL(g(x1, x2)) = 1 + x1 POL(F(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Polo
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
REM(g(x, y), s(z)) -> REM(x, z)
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)
REM(g(x, y), s(z)) -> REM(x, z)
POL(g(x1, x2)) = 1 + x1 POL(REM(x1, x2)) = x1 POL(s(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Dependency Graph
norm(nil) -> 0
norm(g(x, y)) -> s(norm(x))
f(x, nil) -> g(nil, x)
f(x, g(y, z)) -> g(f(x, y), z)
rem(nil, y) -> nil
rem(g(x, y), 0) -> g(x, y)
rem(g(x, y), s(z)) -> rem(x, z)