Term Rewriting System R:
[x, y, z]
rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

REV(.(x, y)) -> ++'(rev(y), .(x, nil))
REV(.(x, y)) -> REV(y)
++'(.(x, y), z) -> ++'(y, z)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`

Dependency Pair:

++'(.(x, y), z) -> ++'(y, z)

Rules:

rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))

The following dependency pair can be strictly oriented:

++'(.(x, y), z) -> ++'(y, z)

The following rules can be oriented:

rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(cdr(x1)) =  x1 POL(++'(x1, x2)) =  1 + x1 + x2 POL(rev(x1)) =  x1 POL(null(x1)) =  x1 POL(false) =  0 POL(++(x1, x2)) =  x1 + x2 POL(nil) =  0 POL(car(x1)) =  x1 POL(true) =  0 POL(.(x1, x2)) =  1 + x1 + x2

resulting in one new DP problem.
Used Argument Filtering System:
++'(x1, x2) -> ++'(x1, x2)
.(x1, x2) -> .(x1, x2)
rev(x1) -> rev(x1)
++(x1, x2) -> ++(x1, x2)
car(x1) -> car(x1)
cdr(x1) -> cdr(x1)
null(x1) -> null(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 3`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳AFS`

Dependency Pair:

Rules:

rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Argument Filtering and Ordering`

Dependency Pair:

REV(.(x, y)) -> REV(y)

Rules:

rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))

The following dependency pair can be strictly oriented:

REV(.(x, y)) -> REV(y)

The following rules can be oriented:

rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(cdr(x1)) =  x1 POL(rev(x1)) =  x1 POL(REV(x1)) =  1 + x1 POL(null(x1)) =  x1 POL(false) =  0 POL(++(x1, x2)) =  x1 + x2 POL(nil) =  0 POL(car(x1)) =  x1 POL(true) =  0 POL(.(x1, x2)) =  1 + x1 + x2

resulting in one new DP problem.
Used Argument Filtering System:
REV(x1) -> REV(x1)
.(x1, x2) -> .(x1, x2)
rev(x1) -> rev(x1)
++(x1, x2) -> ++(x1, x2)
car(x1) -> car(x1)
cdr(x1) -> cdr(x1)
null(x1) -> null(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

rev(nil) -> nil
rev(.(x, y)) -> ++(rev(y), .(x, nil))
car(.(x, y)) -> x
cdr(.(x, y)) -> y
null(nil) -> true
null(.(x, y)) -> false
++(nil, y) -> y
++(.(x, y), z) -> .(x, ++(y, z))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes