Term Rewriting System R:
[y, x, z]
++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(++(x, y), z) -> ++(x, ++(y, z))
Termination of R to be shown.
R
↳Removing Redundant Rules
Removing the following rules from R which fullfill a polynomial ordering:
++(nil, y) -> y
++(x, nil) -> x
where the Polynomial interpretation:
POL(++(x1, x2)) | = x1 + x2 |
POL(nil) | = 1 |
POL(.(x1, x2)) | = x1 + x2 |
was used.
Not all Rules of R can be deleted, so we still have to regard a part of R.
R
↳RRRPolo
→TRS2
↳Removing Redundant Rules
Removing the following rules from R which fullfill a polynomial ordering:
++(.(x, y), z) -> .(x, ++(y, z))
where the Polynomial interpretation:
POL(++(x1, x2)) | = 2·x1 + x2 |
POL(.(x1, x2)) | = 1 + x1 + x2 |
was used.
Not all Rules of R can be deleted, so we still have to regard a part of R.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳Removing Redundant Rules
Removing the following rules from R which fullfill a polynomial ordering:
++(++(x, y), z) -> ++(x, ++(y, z))
where the Polynomial interpretation:
POL(++(x1, x2)) | = 1 + 2·x1 + x2 |
was used.
All Rules of R can be deleted.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→TRS4
↳Overlay and local confluence Check
The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→TRS5
↳Dependency Pair Analysis
R contains no Dependency Pairs and therefore no SCCs.
Termination of R successfully shown.
Duration:
0:00 minutes