Term Rewriting System R:
[y, x, z]
++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(++(x, y), z) -> ++(x, ++(y, z))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

++'(.(x, y), z) -> ++'(y, z)
++'(++(x, y), z) -> ++'(x, ++(y, z))
++'(++(x, y), z) -> ++'(y, z)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

++'(++(x, y), z) -> ++'(y, z)
++'(++(x, y), z) -> ++'(x, ++(y, z))
++'(.(x, y), z) -> ++'(y, z)


Rules:


++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(++(x, y), z) -> ++(x, ++(y, z))





The following dependency pairs can be strictly oriented:

++'(++(x, y), z) -> ++'(y, z)
++'(++(x, y), z) -> ++'(x, ++(y, z))
++'(.(x, y), z) -> ++'(y, z)


The following usable rules using the Ce-refinement can be oriented:

++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(++(x, y), z) -> ++(x, ++(y, z))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{++', ., ++}

resulting in one new DP problem.
Used Argument Filtering System:
++'(x1, x2) -> ++'(x1, x2)
.(x1, x2) -> .(x1, x2)
++(x1, x2) -> ++(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


++(nil, y) -> y
++(x, nil) -> x
++(.(x, y), z) -> .(x, ++(y, z))
++(++(x, y), z) -> ++(x, ++(y, z))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes