R
↳Dependency Pair Analysis
IMPLIES(not(x), or(y, z)) -> IMPLIES(y, or(x, z))
IMPLIES(x, or(y, z)) -> IMPLIES(x, z)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
IMPLIES(x, or(y, z)) -> IMPLIES(x, z)
IMPLIES(not(x), or(y, z)) -> IMPLIES(y, or(x, z))
implies(not(x), y) -> or(x, y)
implies(not(x), or(y, z)) -> implies(y, or(x, z))
implies(x, or(y, z)) -> or(y, implies(x, z))
IMPLIES(x, or(y, z)) -> IMPLIES(x, z)
POL(or(x1, x2)) = 1 + x2 POL(not(x1)) = 0 POL(IMPLIES(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Forward Instantiation Transformation
IMPLIES(not(x), or(y, z)) -> IMPLIES(y, or(x, z))
implies(not(x), y) -> or(x, y)
implies(not(x), or(y, z)) -> implies(y, or(x, z))
implies(x, or(y, z)) -> or(y, implies(x, z))
one new Dependency Pair is created:
IMPLIES(not(x), or(y, z)) -> IMPLIES(y, or(x, z))
IMPLIES(not(x'), or(not(x''''), z')) -> IMPLIES(not(x''''), or(x', z'))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Polynomial Ordering
IMPLIES(not(x'), or(not(x''''), z')) -> IMPLIES(not(x''''), or(x', z'))
implies(not(x), y) -> or(x, y)
implies(not(x), or(y, z)) -> implies(y, or(x, z))
implies(x, or(y, z)) -> or(y, implies(x, z))
IMPLIES(not(x'), or(not(x''''), z')) -> IMPLIES(not(x''''), or(x', z'))
POL(or(x1, x2)) = 1 + x1 POL(not(x1)) = 1 + x1 POL(IMPLIES(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Dependency Graph
implies(not(x), y) -> or(x, y)
implies(not(x), or(y, z)) -> implies(y, or(x, z))
implies(x, or(y, z)) -> or(y, implies(x, z))