or(

and(

not(not(

not(and(

not(or(

R

↳Dependency Pair Analysis

NOT(and(x,y)) -> OR(not(x), not(y))

NOT(and(x,y)) -> NOT(x)

NOT(and(x,y)) -> NOT(y)

NOT(or(x,y)) -> AND(not(x), not(y))

NOT(or(x,y)) -> NOT(x)

NOT(or(x,y)) -> NOT(y)

Furthermore,

R

↳DPs

→DP Problem 1

↳Polynomial Ordering

**NOT(or( x, y)) -> NOT(y)**

or(x,x) ->x

and(x,x) ->x

not(not(x)) ->x

not(and(x,y)) -> or(not(x), not(y))

not(or(x,y)) -> and(not(x), not(y))

The following dependency pairs can be strictly oriented:

NOT(or(x,y)) -> NOT(y)

NOT(or(x,y)) -> NOT(x)

NOT(and(x,y)) -> NOT(y)

NOT(and(x,y)) -> NOT(x)

Additionally, the following rules can be oriented:

or(x,x) ->x

and(x,x) ->x

not(not(x)) ->x

not(and(x,y)) -> or(not(x), not(y))

not(or(x,y)) -> and(not(x), not(y))

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(and(x)_{1}, x_{2})= 1 + x _{1}+ x_{2}_{ }^{ }_{ }^{ }POL(NOT(x)_{1})= 1 + x _{1}_{ }^{ }_{ }^{ }POL(or(x)_{1}, x_{2})= 1 + x _{1}+ x_{2}_{ }^{ }_{ }^{ }POL(not(x)_{1})= x _{1}_{ }^{ }

resulting in one new DP problem.

R

↳DPs

→DP Problem 1

↳Polo

→DP Problem 2

↳Dependency Graph

or(x,x) ->x

and(x,x) ->x

not(not(x)) ->x

not(and(x,y)) -> or(not(x), not(y))

not(or(x,y)) -> and(not(x), not(y))

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes