R
↳Dependency Pair Analysis
ODD(s(x)) -> NOT(odd(x))
ODD(s(x)) -> ODD(x)
+'(x, s(y)) -> +'(x, y)
+'(s(x), y) -> +'(x, y)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
ODD(s(x)) -> ODD(x)
not(true) -> false
not(false) -> true
odd(0) -> false
odd(s(x)) -> not(odd(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(s(x), y) -> s(+(x, y))
ODD(s(x)) -> ODD(x)
not(true) -> false
not(false) -> true
odd(0) -> false
odd(s(x)) -> not(odd(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(s(x), y) -> s(+(x, y))
POL(0) = 0 POL(odd(x1)) = 0 POL(ODD(x1)) = x1 POL(false) = 0 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(not(x1)) = 0 POL(+(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
not(true) -> false
not(false) -> true
odd(0) -> false
odd(s(x)) -> not(odd(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(s(x), y) -> s(+(x, y))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
+'(s(x), y) -> +'(x, y)
+'(x, s(y)) -> +'(x, y)
not(true) -> false
not(false) -> true
odd(0) -> false
odd(s(x)) -> not(odd(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(s(x), y) -> s(+(x, y))
+'(s(x), y) -> +'(x, y)
not(true) -> false
not(false) -> true
odd(0) -> false
odd(s(x)) -> not(odd(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(s(x), y) -> s(+(x, y))
POL(0) = 0 POL(odd(x1)) = 0 POL(false) = 0 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(not(x1)) = 0 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Polynomial Ordering
+'(x, s(y)) -> +'(x, y)
not(true) -> false
not(false) -> true
odd(0) -> false
odd(s(x)) -> not(odd(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(s(x), y) -> s(+(x, y))
+'(x, s(y)) -> +'(x, y)
not(true) -> false
not(false) -> true
odd(0) -> false
odd(s(x)) -> not(odd(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(s(x), y) -> s(+(x, y))
POL(0) = 0 POL(odd(x1)) = 0 POL(false) = 0 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(not(x1)) = 0 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Polo
...
→DP Problem 5
↳Dependency Graph
not(true) -> false
not(false) -> true
odd(0) -> false
odd(s(x)) -> not(odd(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
+(s(x), y) -> s(+(x, y))