R
↳Dependency Pair Analysis
PRIME(s(s(x))) -> PRIME1(s(s(x)), s(x))
PRIME1(x, s(s(y))) -> DIVP(s(s(y)), x)
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)
POL(and(x1, x2)) = x1 + x2 POL(0) = 0 POL(false) = 0 POL(PRIME1(x1, x2)) = 1 + x1 + x2 POL(=(x1, x2)) = x1 + x2 POL(divp) = 0 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(rem) = 0 POL(prime(x1)) = x1 POL(not(x1)) = x1
PRIME1(x1, x2) -> PRIME1(x1, x2)
s(x1) -> s(x1)
prime(x1) -> prime(x1)
prime1(x1, x2) -> x1
and(x1, x2) -> and(x1, x2)
not(x1) -> not(x1)
divp(x1, x2) -> divp
=(x1, x2) -> =(x1, x2)
rem(x1, x2) -> rem
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)