R
↳Dependency Pair Analysis
PRIME(s(s(x))) -> PRIME1(s(s(x)), s(x))
PRIME1(x, s(s(y))) -> DIVP(s(s(y)), x)
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)
prime > prime1 > and
prime > prime1 > true
prime > prime1 > {0, divp, false} > =
prime > prime1 > {0, divp, false} > rem
prime > prime1 > not
PRIME1(x1, x2) -> PRIME1(x1, x2)
s(x1) -> s(x1)
prime(x1) -> prime(x1)
prime1(x1, x2) -> prime1(x1, x2)
and(x1, x2) -> and(x1, x2)
not(x1) -> not(x1)
divp(x1, x2) -> divp(x1, x2)
=(x1, x2) -> =(x1, x2)
rem(x1, x2) -> rem(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)