Term Rewriting System R:
[x, y]
dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y))
Termination of R to be shown.
   R
     ↳Dependency Pair Analysis
R contains the following Dependency Pairs: 
DFIB(s(s(x)), y) -> DFIB(s(x), dfib(x, y))
DFIB(s(s(x)), y) -> DFIB(x, y)
Furthermore, R contains one SCC.
   R
     ↳DPs
       →DP Problem 1
         ↳Polynomial Ordering
Dependency Pairs:
DFIB(s(s(x)), y) -> DFIB(x, y)
DFIB(s(s(x)), y) -> DFIB(s(x), dfib(x, y))
Rule:
dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y))
The following dependency pairs can be strictly oriented:
DFIB(s(s(x)), y) -> DFIB(x, y)
DFIB(s(s(x)), y) -> DFIB(s(x), dfib(x, y))
There are no usable rules w.r.t. to the implicit AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
|   POL(dfib(x1, x2)) | =  0   | 
|   POL(DFIB(x1, x2)) | =  x1   | 
|   POL(s(x1)) | =  1 + x1   | 
 resulting in one new DP problem.
   R
     ↳DPs
       →DP Problem 1
         ↳Polo
           →DP Problem 2
             ↳Dependency Graph
Dependency Pair:
Rule:
dfib(s(s(x)), y) -> dfib(s(x), dfib(x, y))
Using the Dependency Graph resulted in no new DP problems.
Termination of R successfully shown.
Duration: 
0:00 minutes