Term Rewriting System R:
[x, y]
f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(s(s(x))) -> P(h(g(x)))
F(s(s(x))) -> H(g(x))
F(s(s(x))) -> G(x)
F(s(s(x))) -> +'(p(g(x)), q(g(x)))
F(s(s(x))) -> P(g(x))
F(s(s(x))) -> Q(g(x))
G(s(x)) -> H(g(x))
G(s(x)) -> G(x)
G(s(x)) -> +'(p(g(x)), q(g(x)))
G(s(x)) -> P(g(x))
G(s(x)) -> Q(g(x))
H(x) -> +'(p(x), q(x))
H(x) -> P(x)
H(x) -> Q(x)
+'(x, s(y)) -> +'(x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pair:

+'(x, s(y)) -> +'(x, y)


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





The following dependency pair can be strictly oriented:

+'(x, s(y)) -> +'(x, y)


The following rules can be oriented:

f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{f, g} > h > pair
{f, g} > h > + > s
{f, g} > h > p
{f, g} > h > q

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
f(x1) -> f(x1)
p(x1) -> p(x1)
h(x1) -> h(x1)
g(x1) -> g(x1)
+(x1, x2) -> +(x1, x2)
q(x1) -> q(x1)
pair(x1, x2) -> pair(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pair:

G(s(x)) -> G(x)


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





The following dependency pair can be strictly oriented:

G(s(x)) -> G(x)


The following rules can be oriented:

f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{f, g} > h > pair
{f, g} > h > + > s
{f, g} > h > p
{f, g} > h > q

resulting in one new DP problem.
Used Argument Filtering System:
G(x1) -> G(x1)
s(x1) -> s(x1)
f(x1) -> f(x1)
p(x1) -> p(x1)
h(x1) -> h(x1)
g(x1) -> g(x1)
+(x1, x2) -> +(x1, x2)
q(x1) -> q(x1)
pair(x1, x2) -> pair(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


f(0) -> 0
f(s(0)) -> s(0)
f(s(s(x))) -> p(h(g(x)))
f(s(s(x))) -> +(p(g(x)), q(g(x)))
g(0) -> pair(s(0), s(0))
g(s(x)) -> h(g(x))
g(s(x)) -> pair(+(p(g(x)), q(g(x))), p(g(x)))
h(x) -> pair(+(p(x), q(x)), p(x))
p(pair(x, y)) -> x
q(pair(x, y)) -> y
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes