Term Rewriting System R:
[x, y]
fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

FIB(s(s(x))) -> +'(fib(s(x)), fib(x))
FIB(s(s(x))) -> FIB(s(x))
FIB(s(s(x))) -> FIB(x)
+'(x, s(y)) -> +'(x, y)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

+'(x, s(y)) -> +'(x, y)

Rules:

fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

• Dependency Pairs:

FIB(s(s(x))) -> FIB(x)
FIB(s(s(x))) -> FIB(s(x))

Rules:

fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

+'(x, s(y)) -> +'(x, y)

Rules:

fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

• Dependency Pairs:

FIB(s(s(x))) -> FIB(x)
FIB(s(s(x))) -> FIB(s(x))

Rules:

fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Termination of R could not be shown.
Duration:
0:00 minutes