Term Rewriting System R:
[x]
fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FIB(s(s(x))) -> FIB(s(x))
FIB(s(s(x))) -> FIB(x)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering


Dependency Pairs:

FIB(s(s(x))) -> FIB(x)
FIB(s(s(x))) -> FIB(s(x))


Rules:


fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))





The following dependency pairs can be strictly oriented:

FIB(s(s(x))) -> FIB(x)
FIB(s(s(x))) -> FIB(s(x))


The following rules can be oriented:

fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0)=  0  
  POL(fib(x1))=  x1  
  POL(s(x1))=  1 + x1  
  POL(FIB(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
FIB(x1) -> FIB(x1)
s(x1) -> s(x1)
fib(x1) -> fib(x1)
+(x1, x2) -> x1


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 2
Dependency Graph


Dependency Pair:


Rules:


fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes