Term Rewriting System R:
[x]
fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

FIB(s(s(x))) -> FIB(s(x))
FIB(s(s(x))) -> FIB(x)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`

Dependency Pairs:

FIB(s(s(x))) -> FIB(x)
FIB(s(s(x))) -> FIB(s(x))

Rules:

fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))

The following dependency pairs can be strictly oriented:

FIB(s(s(x))) -> FIB(x)
FIB(s(s(x))) -> FIB(s(x))

Additionally, the following rules can be oriented:

fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(0) =  0 POL(fib(x1)) =  1 POL(s(x1)) =  1 + x1 POL(+(x1, x2)) =  0 POL(FIB(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 2`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(x))) -> +(fib(s(x)), fib(x))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes