Term Rewriting System R:
[x, y]
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FAC(0) -> 1'
FAC(s(x)) -> *'(s(x), fac(x))
FAC(s(x)) -> FAC(x)
FLOOP(s(x), y) -> FLOOP(x, *(s(x), y))
FLOOP(s(x), y) -> *'(s(x), y)
*'(x, s(y)) -> +'(*(x, y), x)
*'(x, s(y)) -> *'(x, y)
+'(x, s(y)) -> +'(x, y)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS


Dependency Pair:

+'(x, s(y)) -> +'(x, y)


Rules:


fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)





The following dependency pair can be strictly oriented:

+'(x, s(y)) -> +'(x, y)


The following rules can be oriented:

fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
fac > * > + > s
fac > 1 > 0
fac > 1 > s
floop > * > + > s

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
fac(x1) -> fac(x1)
1 -> 1
*(x1, x2) -> *(x1, x2)
floop(x1, x2) -> floop(x1, x2)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 5
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS


Dependency Pair:


Rules:


fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS


Dependency Pair:

*'(x, s(y)) -> *'(x, y)


Rules:


fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)





The following dependency pair can be strictly oriented:

*'(x, s(y)) -> *'(x, y)


The following rules can be oriented:

fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{fac, 1} > 0
{fac, 1} > * > + > s
floop > * > + > s

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
s(x1) -> s(x1)
fac(x1) -> fac(x1)
1 -> 1
*(x1, x2) -> *(x1, x2)
floop(x1, x2) -> floop(x1, x2)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 6
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS


Dependency Pair:


Rules:


fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS


Dependency Pair:

FAC(s(x)) -> FAC(x)


Rules:


fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)





The following dependency pair can be strictly oriented:

FAC(s(x)) -> FAC(x)


The following rules can be oriented:

fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{fac, 1} > 0
{fac, 1} > * > + > s
floop > * > + > s

resulting in one new DP problem.
Used Argument Filtering System:
FAC(x1) -> FAC(x1)
s(x1) -> s(x1)
fac(x1) -> fac(x1)
1 -> 1
*(x1, x2) -> *(x1, x2)
floop(x1, x2) -> floop(x1, x2)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 7
Dependency Graph
       →DP Problem 4
AFS


Dependency Pair:


Rules:


fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering


Dependency Pair:

FLOOP(s(x), y) -> FLOOP(x, *(s(x), y))


Rules:


fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)





The following dependency pair can be strictly oriented:

FLOOP(s(x), y) -> FLOOP(x, *(s(x), y))


The following rules can be oriented:

*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
1 -> s(0)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{fac, 1} > 0
{fac, 1} > * > + > s
FLOOP > * > + > s
floop > * > + > s

resulting in one new DP problem.
Used Argument Filtering System:
FLOOP(x1, x2) -> FLOOP(x1, x2)
s(x1) -> s(x1)
*(x1, x2) -> *(x1, x2)
+(x1, x2) -> +(x1, x2)
fac(x1) -> fac(x1)
1 -> 1
floop(x1, x2) -> floop(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 8
Dependency Graph


Dependency Pair:


Rules:


fac(0) -> 1
fac(s(x)) -> *(s(x), fac(x))
fac(0) -> s(0)
floop(0, y) -> y
floop(s(x), y) -> floop(x, *(s(x), y))
*(x, 0) -> 0
*(x, s(y)) -> +(*(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
1 -> s(0)





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes