R
↳Dependency Pair Analysis
EXP(x, s(y)) -> *'(x, exp(x, y))
EXP(x, s(y)) -> EXP(x, y)
*'(s(x), y) -> *'(x, y)
-'(s(x), s(y)) -> -'(x, y)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
*'(s(x), y) -> *'(x, y)
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
*'(s(x), y) -> *'(x, y)
POL(*'(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
-'(s(x), s(y)) -> -'(x, y)
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
-'(s(x), s(y)) -> -'(x, y)
POL(-'(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Polo
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
EXP(x, s(y)) -> EXP(x, y)
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
EXP(x, s(y)) -> EXP(x, y)
POL(EXP(x1, x2)) = x2 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Dependency Graph
exp(x, 0) -> s(0)
exp(x, s(y)) -> *(x, exp(x, y))
*(0, y) -> 0
*(s(x), y) -> +(y, *(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)