sum(0) -> 0

sum(s(

sum(s(

sqr(

R

↳Dependency Pair Analysis

SUM(s(x)) -> SQR(s(x))

SUM(s(x)) -> SUM(x)

Furthermore,

R

↳DPs

→DP Problem 1

↳Polynomial Ordering

**SUM(s( x)) -> SUM(x)**

sum(0) -> 0

sum(s(x)) -> +(sqr(s(x)), sum(x))

sum(s(x)) -> +(*(s(x), s(x)), sum(x))

sqr(x) -> *(x,x)

The following dependency pair can be strictly oriented:

SUM(s(x)) -> SUM(x)

Additionally, the following rules can be oriented:

sum(0) -> 0

sum(s(x)) -> +(sqr(s(x)), sum(x))

sum(s(x)) -> +(*(s(x), s(x)), sum(x))

sqr(x) -> *(x,x)

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(0)= 0 _{ }^{ }_{ }^{ }POL(SUM(x)_{1})= x _{1}_{ }^{ }_{ }^{ }POL(sqr(x)_{1})= 0 _{ }^{ }_{ }^{ }POL(*(x)_{1}, x_{2})= 0 _{ }^{ }_{ }^{ }POL(sum(x)_{1})= 0 _{ }^{ }_{ }^{ }POL(s(x)_{1})= 1 + x _{1}_{ }^{ }_{ }^{ }POL(+(x)_{1}, x_{2})= 0 _{ }^{ }

resulting in one new DP problem.

R

↳DPs

→DP Problem 1

↳Polo

→DP Problem 2

↳Dependency Graph

sum(0) -> 0

sum(s(x)) -> +(sqr(s(x)), sum(x))

sum(s(x)) -> +(*(s(x), s(x)), sum(x))

sqr(x) -> *(x,x)

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes