Term Rewriting System R:
[x, y]
sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Termination of R to be shown.

R
Dependency Pair Analysis

R contains the following Dependency Pairs:

SQR(s(x)) -> +'(sqr(x), s(double(x)))
SQR(s(x)) -> SQR(x)
SQR(s(x)) -> DOUBLE(x)
SQR(s(x)) -> +'(sqr(x), double(x))
DOUBLE(s(x)) -> DOUBLE(x)
+'(x, s(y)) -> +'(x, y)

Furthermore, R contains three SCCs.

R
DPs
→DP Problem 1
Argument Filtering and Ordering
→DP Problem 2
AFS
→DP Problem 3
AFS

Dependency Pair:

+'(x, s(y)) -> +'(x, y)

Rules:

sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

The following dependency pair can be strictly oriented:

+'(x, s(y)) -> +'(x, y)

The following rules can be oriented:

sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{double, sqr} > + > s

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
sqr(x1) -> sqr(x1)
+(x1, x2) -> +(x1, x2)
double(x1) -> double(x1)

R
DPs
→DP Problem 1
AFS
→DP Problem 4
Dependency Graph
→DP Problem 2
AFS
→DP Problem 3
AFS

Dependency Pair:

Rules:

sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
AFS
→DP Problem 2
Argument Filtering and Ordering
→DP Problem 3
AFS

Dependency Pair:

DOUBLE(s(x)) -> DOUBLE(x)

Rules:

sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

The following dependency pair can be strictly oriented:

DOUBLE(s(x)) -> DOUBLE(x)

The following rules can be oriented:

sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{double, sqr} > + > s

resulting in one new DP problem.
Used Argument Filtering System:
DOUBLE(x1) -> DOUBLE(x1)
s(x1) -> s(x1)
sqr(x1) -> sqr(x1)
+(x1, x2) -> +(x1, x2)
double(x1) -> double(x1)

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 5
Dependency Graph
→DP Problem 3
AFS

Dependency Pair:

Rules:

sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 3
Argument Filtering and Ordering

Dependency Pair:

SQR(s(x)) -> SQR(x)

Rules:

sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

The following dependency pair can be strictly oriented:

SQR(s(x)) -> SQR(x)

The following rules can be oriented:

sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{double, sqr} > + > s

resulting in one new DP problem.
Used Argument Filtering System:
SQR(x1) -> SQR(x1)
s(x1) -> s(x1)
sqr(x1) -> sqr(x1)
+(x1, x2) -> +(x1, x2)
double(x1) -> double(x1)

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 3
AFS
→DP Problem 6
Dependency Graph

Dependency Pair:

Rules:

sqr(0) -> 0
sqr(s(x)) -> +(sqr(x), s(double(x)))
sqr(s(x)) -> s(+(sqr(x), double(x)))
double(0) -> 0
double(s(x)) -> s(s(double(x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes