Term Rewriting System R:
[x, y]
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(s(x)) -> G(x, s(x))
G(s(x), y) -> G(x, +(y, s(x)))
G(s(x), y) -> +'(y, s(x))
G(s(x), y) -> G(x, s(+(y, x)))
G(s(x), y) -> +'(y, x)
+'(x, s(y)) -> +'(x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pair:

+'(x, s(y)) -> +'(x, y)


Rules:


f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





The following dependency pair can be strictly oriented:

+'(x, s(y)) -> +'(x, y)


The following rules can be oriented:

f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{f, g, 1} > + > s

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)
f(x1) -> f(x1)
g(x1, x2) -> g(x1, x2)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pairs:

G(s(x), y) -> G(x, s(+(y, x)))
G(s(x), y) -> G(x, +(y, s(x)))


Rules:


f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





The following dependency pairs can be strictly oriented:

G(s(x), y) -> G(x, s(+(y, x)))
G(s(x), y) -> G(x, +(y, s(x)))


The following rules can be oriented:

+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{f, g, 1} > + > s
G > + > s

resulting in one new DP problem.
Used Argument Filtering System:
G(x1, x2) -> G(x1, x2)
s(x1) -> s(x1)
+(x1, x2) -> +(x1, x2)
f(x1) -> f(x1)
g(x1, x2) -> g(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


f(0) -> 1
f(s(x)) -> g(x, s(x))
g(0, y) -> y
g(s(x), y) -> g(x, +(y, s(x)))
g(s(x), y) -> g(x, s(+(y, x)))
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes