Term Rewriting System R:
[y, x]
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

Termination of R to be shown.

`   R`
`     ↳Overlay and local confluence Check`

The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

+'(s(x), y) -> +'(x, y)
+'(p(x), y) -> +'(x, y)
MINUS(s(x)) -> MINUS(x)
MINUS(p(x)) -> MINUS(x)
*'(s(x), y) -> +'(*(x, y), y)
*'(s(x), y) -> *'(x, y)
*'(p(x), y) -> +'(*(x, y), minus(y))
*'(p(x), y) -> *'(x, y)
*'(p(x), y) -> MINUS(y)

Furthermore, R contains three SCCs.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳Usable Rules (Innermost)`
`           →DP Problem 2`
`             ↳UsableRules`
`           →DP Problem 3`
`             ↳UsableRules`

Dependency Pairs:

+'(p(x), y) -> +'(x, y)
+'(s(x), y) -> +'(x, y)

Rules:

+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

Strategy:

innermost

As we are in the innermost case, we can delete all 9 non-usable-rules.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`             ...`
`               →DP Problem 4`
`                 ↳Size-Change Principle`
`           →DP Problem 2`
`             ↳UsableRules`
`           →DP Problem 3`
`             ↳UsableRules`

Dependency Pairs:

+'(p(x), y) -> +'(x, y)
+'(s(x), y) -> +'(x, y)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. +'(p(x), y) -> +'(x, y)
2. +'(s(x), y) -> +'(x, y)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)
p(x1) -> p(x1)

We obtain no new DP problems.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`           →DP Problem 2`
`             ↳Usable Rules (Innermost)`
`           →DP Problem 3`
`             ↳UsableRules`

Dependency Pairs:

MINUS(p(x)) -> MINUS(x)
MINUS(s(x)) -> MINUS(x)

Rules:

+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

Strategy:

innermost

As we are in the innermost case, we can delete all 9 non-usable-rules.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`           →DP Problem 2`
`             ↳UsableRules`
`             ...`
`               →DP Problem 5`
`                 ↳Size-Change Principle`
`           →DP Problem 3`
`             ↳UsableRules`

Dependency Pairs:

MINUS(p(x)) -> MINUS(x)
MINUS(s(x)) -> MINUS(x)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. MINUS(p(x)) -> MINUS(x)
2. MINUS(s(x)) -> MINUS(x)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
1>1

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)
p(x1) -> p(x1)

We obtain no new DP problems.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`           →DP Problem 2`
`             ↳UsableRules`
`           →DP Problem 3`
`             ↳Usable Rules (Innermost)`

Dependency Pairs:

*'(p(x), y) -> *'(x, y)
*'(s(x), y) -> *'(x, y)

Rules:

+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

Strategy:

innermost

As we are in the innermost case, we can delete all 9 non-usable-rules.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`           →DP Problem 2`
`             ↳UsableRules`
`           →DP Problem 3`
`             ↳UsableRules`
`             ...`
`               →DP Problem 6`
`                 ↳Size-Change Principle`

Dependency Pairs:

*'(p(x), y) -> *'(x, y)
*'(s(x), y) -> *'(x, y)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. *'(p(x), y) -> *'(x, y)
2. *'(s(x), y) -> *'(x, y)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)
p(x1) -> p(x1)

We obtain no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes