Term Rewriting System R:
[y, x]
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(s(x), y) -> +'(x, y)
+'(p(x), y) -> +'(x, y)
MINUS(s(x)) -> MINUS(x)
MINUS(p(x)) -> MINUS(x)
*'(s(x), y) -> +'(*(x, y), y)
*'(s(x), y) -> *'(x, y)
*'(p(x), y) -> +'(*(x, y), minus(y))
*'(p(x), y) -> *'(x, y)
*'(p(x), y) -> MINUS(y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pairs:

+'(p(x), y) -> +'(x, y)
+'(s(x), y) -> +'(x, y)


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))





The following dependency pair can be strictly oriented:

+'(p(x), y) -> +'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  x1  
  POL(+'(x1, x2))=  x1 + x2  
  POL(p(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
p(x1) -> p(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:

+'(s(x), y) -> +'(x, y)


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))





The following dependency pair can be strictly oriented:

+'(s(x), y) -> +'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(s(x1))=  1 + x1  
  POL(+'(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 4
AFS
             ...
               →DP Problem 5
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS


Dependency Pair:


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS


Dependency Pairs:

MINUS(p(x)) -> MINUS(x)
MINUS(s(x)) -> MINUS(x)


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))





The following dependency pair can be strictly oriented:

MINUS(p(x)) -> MINUS(x)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MINUS(x1))=  x1  
  POL(s(x1))=  x1  
  POL(p(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1) -> MINUS(x1)
p(x1) -> p(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 6
Argument Filtering and Ordering
       →DP Problem 3
AFS


Dependency Pair:

MINUS(s(x)) -> MINUS(x)


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))





The following dependency pair can be strictly oriented:

MINUS(s(x)) -> MINUS(x)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(MINUS(x1))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1) -> MINUS(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 6
AFS
             ...
               →DP Problem 7
Dependency Graph
       →DP Problem 3
AFS


Dependency Pair:


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering


Dependency Pairs:

*'(p(x), y) -> *'(x, y)
*'(s(x), y) -> *'(x, y)


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))





The following dependency pair can be strictly oriented:

*'(s(x), y) -> *'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(*'(x1, x2))=  x1 + x2  
  POL(s(x1))=  1 + x1  
  POL(p(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
s(x1) -> s(x1)
p(x1) -> p(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 8
Argument Filtering and Ordering


Dependency Pair:

*'(p(x), y) -> *'(x, y)


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))





The following dependency pair can be strictly oriented:

*'(p(x), y) -> *'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(*'(x1, x2))=  x1 + x2  
  POL(p(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
*'(x1, x2) -> *'(x1, x2)
p(x1) -> p(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 8
AFS
             ...
               →DP Problem 9
Dependency Graph


Dependency Pair:


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
+(p(x), y) -> p(+(x, y))
minus(0) -> 0
minus(s(x)) -> p(minus(x))
minus(p(x)) -> s(minus(x))
*(0, y) -> 0
*(s(x), y) -> +(*(x, y), y)
*(p(x), y) -> +(*(x, y), minus(y))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes