Term Rewriting System R:
[y, x]
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(s(x), y) -> +'(x, y)
-'(s(x), s(y)) -> -'(x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pair:

+'(s(x), y) -> +'(x, y)


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)





The following dependency pair can be strictly oriented:

+'(s(x), y) -> +'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pair:

-'(s(x), s(y)) -> -'(x, y)


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)





The following dependency pair can be strictly oriented:

-'(s(x), s(y)) -> -'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Homeomorphic Embedding Order with EMB
resulting in one new DP problem.
Used Argument Filtering System:
-'(x1, x2) -> -'(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes