R
↳Dependency Pair Analysis
+'(s(x), y) -> +'(x, y)
-'(s(x), s(y)) -> -'(x, y)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
+'(s(x), y) -> +'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
+'(s(x), y) -> +'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
POL(0) = 0 POL(s(x1)) = 1 + x1 POL(-(x1, x2)) = x1 POL(+(x1, x2)) = x1 + x2 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
-'(s(x), s(y)) -> -'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
-'(s(x), s(y)) -> -'(x, y)
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)
POL(0) = 0 POL(-'(x1, x2)) = x1 POL(s(x1)) = 1 + x1 POL(-(x1, x2)) = x1 POL(+(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Dependency Graph
+(0, y) -> y
+(s(x), y) -> s(+(x, y))
-(0, y) -> 0
-(x, 0) -> x
-(s(x), s(y)) -> -(x, y)