Term Rewriting System R:
[z, x, y]
+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

Termination of R to be shown.

R
Dependency Pair Analysis

R contains the following Dependency Pairs:

+'(a, b) -> +'(b, a)
+'(a, +(b, z)) -> +'(b, +(a, z))
+'(a, +(b, z)) -> +'(a, z)
+'(+(x, y), z) -> +'(x, +(y, z))
+'(+(x, y), z) -> +'(y, z)
F(+(x, y), z) -> +'(f(x, z), f(y, z))
F(+(x, y), z) -> F(x, z)
F(+(x, y), z) -> F(y, z)

Furthermore, R contains three SCCs.

R
DPs
→DP Problem 1
Argument Filtering and Ordering
→DP Problem 2
AFS
→DP Problem 3
AFS

Dependency Pair:

+'(a, +(b, z)) -> +'(a, z)

Rules:

+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

The following dependency pair can be strictly oriented:

+'(a, +(b, z)) -> +'(a, z)

There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> +(x1, x2)

R
DPs
→DP Problem 1
AFS
→DP Problem 4
Dependency Graph
→DP Problem 2
AFS
→DP Problem 3
AFS

Dependency Pair:

Rules:

+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
AFS
→DP Problem 2
Argument Filtering and Ordering
→DP Problem 3
AFS

Dependency Pairs:

+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))

Rules:

+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

The following dependency pairs can be strictly oriented:

+'(+(x, y), z) -> +'(y, z)
+'(+(x, y), z) -> +'(x, +(y, z))

The following usable rules using the Ce-refinement can be oriented:

+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{a, b}
+' > +

resulting in one new DP problem.
Used Argument Filtering System:
+'(x1, x2) -> +'(x1, x2)
+(x1, x2) -> +(x1, x2)

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 5
Dependency Graph
→DP Problem 3
AFS

Dependency Pair:

Rules:

+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 3
Argument Filtering and Ordering

Dependency Pairs:

F(+(x, y), z) -> F(y, z)
F(+(x, y), z) -> F(x, z)

Rules:

+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

The following dependency pairs can be strictly oriented:

F(+(x, y), z) -> F(y, z)
F(+(x, y), z) -> F(x, z)

There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
F(x1, x2) -> F(x1, x2)
+(x1, x2) -> +(x1, x2)

R
DPs
→DP Problem 1
AFS
→DP Problem 2
AFS
→DP Problem 3
AFS
→DP Problem 6
Dependency Graph

Dependency Pair:

Rules:

+(a, b) -> +(b, a)
+(a, +(b, z)) -> +(b, +(a, z))
+(+(x, y), z) -> +(x, +(y, z))
f(a, y) -> a
f(b, y) -> b
f(+(x, y), z) -> +(f(x, z), f(y, z))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes