Term Rewriting System R:
[x, y, z]
f(+(x, 0)) -> f(x)
+(x, +(y, z)) -> +(+(x, y), z)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(+(x, 0)) -> F(x)
+'(x, +(y, z)) -> +'(+(x, y), z)
+'(x, +(y, z)) -> +'(x, y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
Remaining


Dependency Pair:

F(+(x, 0)) -> F(x)


Rules:


f(+(x, 0)) -> f(x)
+(x, +(y, z)) -> +(+(x, y), z)





The following dependency pair can be strictly oriented:

F(+(x, 0)) -> F(x)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
+(x1, x2) -> +(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Remaining


Dependency Pair:


Rules:


f(+(x, 0)) -> f(x)
+(x, +(y, z)) -> +(+(x, y), z)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

+'(x, +(y, z)) -> +'(x, y)
+'(x, +(y, z)) -> +'(+(x, y), z)


Rules:


f(+(x, 0)) -> f(x)
+(x, +(y, z)) -> +(+(x, y), z)




Termination of R could not be shown.
Duration:
0:00 minutes